WET Sensor Performance in Organic and Inorganic Media with Heterogeneous Moisture Distribution

2011 ◽  
Vol 75 (4) ◽  
pp. 1244-1252 ◽  
Author(s):  
G. Kargas ◽  
P. Kerkides ◽  
M. Seyfried ◽  
A. Sgoumbopoulou
2005 ◽  
Author(s):  
Michael Harris ◽  
William Avera ◽  
Chad Steed ◽  
John Sample ◽  
Leonard D. Bibee ◽  
...  

2001 ◽  
Vol 66 ◽  
Author(s):  
M. Aslanidou ◽  
P. Smiris

This  study deals with the soil moisture distribution and its effect on the  potential growth and    adaptation of the over-story species in north-east Chalkidiki. These  species are: Quercus    dalechampii Ten, Quercus  conferta Kit, Quercus  pubescens Willd, Castanea  sativa Mill, Fagus    moesiaca Maly-Domin and also Taxus baccata L. in mixed stands  with Fagus moesiaca.    Samples of soil, 1-2 kg per 20cm depth, were taken and the moisture content  of each sample    was measured in order to determine soil moisture distribution and its  contribution to the growth    of the forest species. The most important results are: i) available water  is influenced by the soil    depth. During the summer, at a soil depth of 10 cm a significant  restriction was observed. ii) the    large duration of the dry period in the deep soil layers has less adverse  effect on stands growth than in the case of the soil surface layers, due to the fact that the root system mainly spreads out    at a soil depth of 40 cm iii) in the beginning of the growing season, the  soil moisture content is    greater than 30 % at a soil depth of 60 cm, in beech and mixed beech-yew  stands, is 10-15 % in    the Q. pubescens  stands and it's more than 30 % at a soil depth of 60 cm in Q. dalechampii    stands.


Author(s):  
Fred V. Brock ◽  
Scott J. Richardson

This book treats instrumentation used in meteorological surface systems, both on the synoptic scale and the mesoscale, and the instrumentation used in upper air soundings. The text includes material on first- and second-order differential equations as applied to instrument dynamic performance, and required solutions are developed. Sensor physics are emphasized in order to explain how sensors work and to explore the strengths and weaknesses of each design type. The book is organized according to sensor type and function (temperature, humidity, and wind sensors, for example), though several unifying themes are developed for each sensor. Functional diagrams are used to portray sensors as a set of logical functions, and static sensitivity is derived from a sensor's transfer equation, focusing attention on sensor physics and on ways in which particular designs might be improved. Sensor performance specifications are explored, helping to compare various instruments and to tell users what to expect as a reasonable level of performance. Finally, the text examines the critical area of environmental exposure of instruments. In a well-designed, properly installed, and well-maintained meteorological measurement system, exposure problems are usually the largest source of error, making this chapter one of the most useful sections of the book.


2019 ◽  
Vol 66 (4) ◽  
pp. 1937-1941 ◽  
Author(s):  
B. R. Thomas ◽  
S. Faramehr ◽  
D. C. Moody ◽  
J. E. Evans ◽  
M. P. Elwin ◽  
...  

2021 ◽  
Vol 56 (9) ◽  
pp. 5520-5531
Author(s):  
Xinmei Liu ◽  
Chunyang Yang ◽  
Wenlong Yang ◽  
Jiaqi Lin ◽  
Chen Liang ◽  
...  

Author(s):  
Saeromi Chung ◽  
Nanjanagudu Ganesh Gurudatt ◽  
Jinsung Jeon ◽  
Changill Ban ◽  
Yoon-Bo Shim

Sign in / Sign up

Export Citation Format

Share Document