GIS Applications of Deterministic Solute Transport Models for Regional-Scale Assessment of Non-Point Source Pollutants in the Vadose Zone

Author(s):  
Dennis L. Corwin
Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 457
Author(s):  
Hongbin Zhan ◽  
Quanrong Wang ◽  
Zhang Wen

The theme of this special issue is to explore the new territories beyond conventional subsurface flow and transport theories. We have selected 12 articles in this special issue and these articles cover a wide range of problems including (1) Non-Fickian chemical transport in various environments; (2) Non-Darcian flow; (3) Flow and transport in low-permeability media; (4) Vadose zone process; (5) Regional scale groundwater flow and groundwater-surface interaction; (6) Innovative numerical methods. The major contributions of these papers are summarized in this editorial.


Author(s):  
Richard Potts ◽  
Daniel Cole

A geographic information system is an ideal tool for use in interdisciplinary studies because it provides automated means of linking and relating different spatial databases. In this paper we discuss GIS applications to ongoing archaeological and paleoecological studies at Olorgesailie, an early hominid archaeological locality in the rift valley of southern Kenya and one of the most noted Acheulian handaxe sites worldwide (Isaac 1977). The questions being asked in early hominid archaeology require thinking beyond individual artifacts and site excavations to broader spatial scales within welldefined time intervals (or chronostratigraphic units) (Blumenschine and Masao 1991; Potts 1991). The sedimentary exposures at Olorgesailie permit the smallest spatial scale of individual artifacts and fossils to be integrated with regional-scale studies. Since many of the GIS applications are still in initial form, the purpose here is largely to illustrate the conceptual framework by which GIS integrates the analysis of spatial data at varying geographic scales in the Olorgesailie basin. Covering over 4000 km in length, the African Rift System trends southward from the Afar Triangle in the Red Sea region to south of the Zambezi River in Zambia. The numerous continental rift basins that make up the rift system have a complex structural and volcanic history. For most of its length, the African Rift traverses Ethiopia, Kenya, and Tanzania. The rift is divisible into eastern and western portions, which merge into a broad faulted region in northern Tanzania (Baker et al. 1972). Between the eastern and western rifts, occupying portions of Uganda, Tanzania, and northern Kenya, is an uplifted plateau 1000 to 1200 m in elevation. Uplifted, elongated domal structures located in Ethiopia and Kenya form the structural base from which the East African Rift System has developed. The rocks that make up this shield complex are Precambrian gneisses, quartzites, and schists. In addition to intrusions by dikes and plutons, these basement rocks have been altered by partial melting and metamorphism. Significant though episodic uplift of the Kenyan dome and its flanks during the late Cretaceous and middle and late Tertiary contributed to the development of a graben structure (Baker 1986; Baker et al. 1972).


Sign in / Sign up

Export Citation Format

Share Document