Spatiotemporal Developmental Trajectories in the Arabidopsis Root Revealed Using High-Throughput Single Cell RNA Sequencing

2018 ◽  
Author(s):  
Tom Denyer ◽  
Xiaoli Ma ◽  
Simon Klesen ◽  
Emanuele Scacchi ◽  
Kay Nieselt ◽  
...  
2019 ◽  
Vol 48 (6) ◽  
pp. 840-852.e5 ◽  
Author(s):  
Tom Denyer ◽  
Xiaoli Ma ◽  
Simon Klesen ◽  
Emanuele Scacchi ◽  
Kay Nieselt ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Sunny Z. Wu ◽  
Daniel L. Roden ◽  
Ghamdan Al-Eryani ◽  
Nenad Bartonicek ◽  
Kate Harvey ◽  
...  

Abstract Background High throughput single-cell RNA sequencing (scRNA-Seq) has emerged as a powerful tool for exploring cellular heterogeneity among complex human cancers. scRNA-Seq studies using fresh human surgical tissue are logistically difficult, preclude histopathological triage of samples, and limit the ability to perform batch processing. This hindrance can often introduce technical biases when integrating patient datasets and increase experimental costs. Although tissue preservation methods have been previously explored to address such issues, it is yet to be examined on complex human tissues, such as solid cancers and on high throughput scRNA-Seq platforms. Methods Using the Chromium 10X platform, we sequenced a total of ~ 120,000 cells from fresh and cryopreserved replicates across three primary breast cancers, two primary prostate cancers and a cutaneous melanoma. We performed detailed analyses between cells from each condition to assess the effects of cryopreservation on cellular heterogeneity, cell quality, clustering and the identification of gene ontologies. In addition, we performed single-cell immunophenotyping using CITE-Seq on a single breast cancer sample cryopreserved as solid tissue fragments. Results Tumour heterogeneity identified from fresh tissues was largely conserved in cryopreserved replicates. We show that sequencing of single cells prepared from cryopreserved tissue fragments or from cryopreserved cell suspensions is comparable to sequenced cells prepared from fresh tissue, with cryopreserved cell suspensions displaying higher correlations with fresh tissue in gene expression. We showed that cryopreservation had minimal impacts on the results of downstream analyses such as biological pathway enrichment. For some tumours, cryopreservation modestly increased cell stress signatures compared to freshly analysed tissue. Further, we demonstrate the advantage of cryopreserving whole-cells for detecting cell-surface proteins using CITE-Seq, which is impossible using other preservation methods such as single nuclei-sequencing. Conclusions We show that the viable cryopreservation of human cancers provides high-quality single-cells for multi-omics analysis. Our study guides new experimental designs for tissue biobanking for future clinical single-cell RNA sequencing studies.


2021 ◽  
Author(s):  
Paul Datlinger ◽  
André F. Rendeiro ◽  
Thorina Boenke ◽  
Martin Senekowitsch ◽  
Thomas Krausgruber ◽  
...  

Lab on a Chip ◽  
2018 ◽  
Vol 18 (5) ◽  
pp. 775-784 ◽  
Author(s):  
Hui-Sung Moon ◽  
Kwanghwi Je ◽  
Jae-Woong Min ◽  
Donghyun Park ◽  
Kyung-Yeon Han ◽  
...  

We developed a modified high-throughput droplet barcoding technique for single-cell Drop-Seq via introduction of hydrodynamic ordering in a spiral microchannel.


Science ◽  
2020 ◽  
Vol 371 (6531) ◽  
pp. eaba5257 ◽  
Author(s):  
Anna Kuchina ◽  
Leandra M. Brettner ◽  
Luana Paleologu ◽  
Charles M. Roco ◽  
Alexander B. Rosenberg ◽  
...  

Single-cell RNA sequencing (scRNA-seq) has become an essential tool for characterizing gene expression in eukaryotes, but current methods are incompatible with bacteria. Here, we introduce microSPLiT (microbial split-pool ligation transcriptomics), a high-throughput scRNA-seq method for Gram-negative and Gram-positive bacteria that can resolve heterogeneous transcriptional states. We applied microSPLiT to >25,000 Bacillus subtilis cells sampled at different growth stages, creating an atlas of changes in metabolism and lifestyle. We retrieved detailed gene expression profiles associated with known, but rare, states such as competence and prophage induction and also identified unexpected gene expression states, including the heterogeneous activation of a niche metabolic pathway in a subpopulation of cells. MicroSPLiT paves the way to high-throughput analysis of gene expression in bacterial communities that are otherwise not amenable to single-cell analysis, such as natural microbiota.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 182 ◽  
Author(s):  
Serena Liu ◽  
Cole Trapnell

Single-cell RNA-sequencing methods are now robust and economically practical and are becoming a powerful tool for high-throughput, high-resolution transcriptomic analysis of cell states and dynamics. Single-cell approaches circumvent the averaging artifacts associated with traditional bulk population data, yielding new insights into the cellular diversity underlying superficially homogeneous populations. Thus far, single-cell RNA-sequencing has already shown great effectiveness in unraveling complex cell populations, reconstructing developmental trajectories, and modeling transcriptional dynamics. Ongoing technical improvements to single-cell RNA-sequencing throughput and sensitivity, the development of more sophisticated analytical frameworks for single-cell data, and an increasing array of complementary single-cell assays all promise to expand the usefulness and potential applications of single-cell transcriptomic profiling.


Sign in / Sign up

Export Citation Format

Share Document