Polarization of Na +/K +-Atpase Dependent on Cholesterol Transport Through Membrane Contact Sites Regulates Spermiogenesis and Reproductive Success in C. Elegans

2020 ◽  
Author(s):  
Qiushi Wang ◽  
Zheng Cao ◽  
Baochen Du ◽  
Qi Zhang ◽  
Lianwan Chen ◽  
...  
2017 ◽  
Vol 36 (10) ◽  
pp. 1412-1433 ◽  
Author(s):  
Léa P Wilhelm ◽  
Corinne Wendling ◽  
Benoît Védie ◽  
Toshihide Kobayashi ◽  
Marie‐Pierre Chenard ◽  
...  

2004 ◽  
Vol 82 (1) ◽  
pp. 87-98 ◽  
Author(s):  
Vesa M Olkkonen ◽  
Timothy P Levine

Oxysterols are potent signalling lipids that directly bind liver X receptors (LXRs) and a subset of oxysterol binding protein (OSBP) related proteins (ORPs). It is relatively well established that the oxysterol-regulated function of LXRs is to control the expression of genes involved in reverse cholesterol transport, catabolism of cholesterol, and lipogenesis. In contrast, the mechanisms by which oxysterols and ORPs affect cellular lipid metabolism have remained poorly understood. In this review, we summarize the information available on function of the ORPs and compare the two families of proteins binding oxysterol to demonstrate the different responses that similar lipids can elicit within cells. The other focus is on the membrane targeting determinants and the protein interaction partners of ORPs, which provide interesting clues to the mode(s) of ORP action. Specifically, we suggest a model in which a general property of ORPs is to function at membrane contact sites, specialized zones of communication between two different organelles.Key words: endoplasmic reticulum, lipid transport, LXR, membrane contact sites, ORP, OSBP, Osh, sterol metabolism.


2016 ◽  
Vol 37 (5) ◽  
pp. 473-483 ◽  
Author(s):  
Emily R. Eden ◽  
Elena Sanchez-Heras ◽  
Anna Tsapara ◽  
Andrzej Sobota ◽  
Tim P. Levine ◽  
...  

Genetics ◽  
2021 ◽  
Author(s):  
Christopher A Piggott ◽  
Zilu Wu ◽  
Stephen Nurrish ◽  
Suhong Xu ◽  
Joshua M Kaplan ◽  
...  

Abstract The junctophilin family of proteins tether together plasma membrane (PM) and endoplasmic reticulum (ER) membranes, and couple PM- and ER-localized calcium channels. Understanding in vivo functions of junctophilins is of great interest for dissecting the physiological roles of ER-PM contact sites. Here, we show that the sole C. elegans junctophilin JPH-1 localizes to discrete membrane contact sites in neurons and muscles and has important tissue-specific functions. jph-1 null mutants display slow growth and development due to weaker contraction of pharyngeal muscles, leading to reduced feeding. In the body wall muscle, JPH-1 co-localizes with the PM-localized EGL-19 voltage-gated calcium channel and ER-localized UNC-68/RyR calcium channel, and is required for animal movement. In neurons, JPH-1 co-localizes with the membrane contact site protein Extended-SYnaptoTagmin 2 (ESYT-2) in soma, and is present near presynaptic release sites. Interestingly, jph-1 and esyt-2 null mutants display mutual suppression in their response to aldicarb, suggesting that JPH-1 and ESYT-2 have antagonistic roles in neuromuscular synaptic transmission. Additionally, we find an unexpected cell non-autonomous effect of jph-1 in axon regrowth after injury. Genetic double mutant analysis suggests that jph-1 functions in overlapping pathways with two PM-localized voltage-gated calcium channels, egl-19 and unc-2, and unc-68/RyR for animal health and development. Finally, we show that jph-1 regulates the colocalization of EGL-19 and UNC-68 and that unc-68/RyR is required for JPH-1 localization to ER-PM puncta. Our data demonstrate important roles for junctophilin in cellular physiology, and also provide insights into how junctophilin functions together with other calcium channels in vivo.


Sign in / Sign up

Export Citation Format

Share Document