scholarly journals Caenorhabditis elegans Junctophilin has tissue-specific functions and regulates neurotransmission with extended-synaptotagmin

Genetics ◽  
2021 ◽  
Author(s):  
Christopher A Piggott ◽  
Zilu Wu ◽  
Stephen Nurrish ◽  
Suhong Xu ◽  
Joshua M Kaplan ◽  
...  

Abstract The junctophilin family of proteins tether together plasma membrane (PM) and endoplasmic reticulum (ER) membranes, and couple PM- and ER-localized calcium channels. Understanding in vivo functions of junctophilins is of great interest for dissecting the physiological roles of ER-PM contact sites. Here, we show that the sole C. elegans junctophilin JPH-1 localizes to discrete membrane contact sites in neurons and muscles and has important tissue-specific functions. jph-1 null mutants display slow growth and development due to weaker contraction of pharyngeal muscles, leading to reduced feeding. In the body wall muscle, JPH-1 co-localizes with the PM-localized EGL-19 voltage-gated calcium channel and ER-localized UNC-68/RyR calcium channel, and is required for animal movement. In neurons, JPH-1 co-localizes with the membrane contact site protein Extended-SYnaptoTagmin 2 (ESYT-2) in soma, and is present near presynaptic release sites. Interestingly, jph-1 and esyt-2 null mutants display mutual suppression in their response to aldicarb, suggesting that JPH-1 and ESYT-2 have antagonistic roles in neuromuscular synaptic transmission. Additionally, we find an unexpected cell non-autonomous effect of jph-1 in axon regrowth after injury. Genetic double mutant analysis suggests that jph-1 functions in overlapping pathways with two PM-localized voltage-gated calcium channels, egl-19 and unc-2, and unc-68/RyR for animal health and development. Finally, we show that jph-1 regulates the colocalization of EGL-19 and UNC-68 and that unc-68/RyR is required for JPH-1 localization to ER-PM puncta. Our data demonstrate important roles for junctophilin in cellular physiology, and also provide insights into how junctophilin functions together with other calcium channels in vivo.

2020 ◽  
Author(s):  
Christopher A. Piggott ◽  
Zilu Wu ◽  
Stephen Nurrish ◽  
Suhong Xu ◽  
Joshua M. Kaplan ◽  
...  

AbstractThe junctophilin family of proteins tether together plasma membrane (PM) and endoplasmic reticulum (ER) membranes, and couple PM- and ER-localized calcium channels. Understanding in vivo functions of junctophilins is of great interest for dissecting the physiological roles of ER-PM contact sites. Here, we show that the sole C. elegans junctophilin JPH-1 localizes to discrete membrane contact sites in neurons and muscles and has important tissue-specific functions. jph-1 null mutants display slow growth and development due to weaker contraction of pharyngeal muscles, leading to reduced feeding. In the body wall muscle, JPH-1 co-localizes with the PM-localized EGL-19 voltage-gated calcium channel and ER-localized UNC-68/RyR calcium channel, and is required for animal movement. We also find an unexpected cell non-autonomous effect of jph-1 in axon regrowth after injury. In neurons, JPH-1 co-localizes with the membrane contact site protein Extended-SYnaptoTagmin 2 (ESYT-2) and modulates neurotransmission. Interestingly, jph-1 and esyt-2 null mutants display mutual suppression in their response to aldicarb, suggesting that JPH-1 and ESYT-1 have antagonistic roles in neuromuscular synaptic transmission. Our genetic double mutant analysis also reveals that jph-1 functions in overlapping pathways with two PM-localized voltage-gated calcium channels, egl-19 and unc-2, and unc-68/RyR for animal health and development. Finally, we show that unc-68/RyR is required for JPH-1 localization to ER-PM puncta. Our data demonstrate important roles for junctophilin in cellular physiology, and also provide insights into how junctophilin functions together with other calcium channels in vivo.


2021 ◽  
Author(s):  
Noemi Ruiz-Lopez ◽  
Jessica Pérez-Sancho ◽  
Alicia Esteban del Valle ◽  
Richard P Haslam ◽  
Steffen Vanneste ◽  
...  

Abstract Endoplasmic reticulum-plasma membrane contact sites (ER-PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis thaliana mutants lacking the ER-PM protein tether synaptotagmin1 (SYT1) exhibit decreased plasma membrane (PM) integrity under multiple abiotic stresses such as freezing, high salt, osmotic stress and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER-PM tether that also functions in maintaining PM integrity. The ER-PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to wild type while the levels of most glycerolipid species remain unchanged. Additionally, the SYT1-green fluorescent protein (GFP) fusion preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress.


Author(s):  
Noemi Ruiz-Lopez ◽  
Jessica Pérez-Sancho ◽  
Alicia Esteban del Valle ◽  
Richard P. Haslam ◽  
Steffen Vanneste ◽  
...  

SUMMARYEndoplasmic Reticulum-Plasma Membrane contact sites (ER-PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis mutants lacking the ER-PM protein tether synaptotagmin1 (SYT1) exhibit decreased plasma membrane (PM) integrity under multiple abiotic stresses such as freezing, high salt, osmotic stress and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER-PM tether that also functions in maintaining PM integrity. The ER-PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to WT while the levels of most glycerolipid species remain unchanged. Additionally, SYT1-GFP preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a crucial SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Marina Besprozvannaya ◽  
Eamonn Dickson ◽  
Hao Li ◽  
Kenneth S Ginburg ◽  
Donald M Bers ◽  
...  

Endoplasmic reticulum (ER) membrane contact sites (MCSs) are crucial regulatory hubs in cells, playing roles in signaling, organelle dynamics, and ion and lipid homeostasis. Previous work demonstrated that the highly conserved yeast Ltc/Lam sterol transporters localize and function at ER MCSs. Our analysis of the human family members, GRAMD1a and GRAMD2a, demonstrates that they are ER-PM MCS proteins, which mark separate regions of the plasma membrane (PM) and perform distinct functions in vivo. GRAMD2a, but not GRAMD1a, co-localizes with the E-Syt2/3 tethers at ER-PM contacts in a PIP lipid-dependent manner and pre-marks the subset of PI(4,5)P2-enriched ER-PM MCSs utilized for STIM1 recruitment. Data from an analysis of cells lacking GRAMD2a suggest that it is an organizer of ER-PM MCSs with pleiotropic functions including calcium homeostasis. Thus, our data demonstrate the existence of multiple ER-PM domains in human cells that are functionally specialized by GRAM-domain containing proteins.


2019 ◽  
Author(s):  
Laurin Heinrich ◽  
Stefanie Ryglewski

AbstractVoltage gated calcium channels (VGCCs) regulate neuronal excitability and translate activity into calcium dependent intracellular signaling. The pore forming α1 subunit of high voltage activated (HVA) VGCCs operates not in isolation but associates with α2δ accessory subunits. α2δ subunits can affect calcium channel biophysical properties, surfacing, localization and transport, but their in vivo functions are incompletely understood. In vertebrates, it is largely unknown whether different combinations of the four α2δ and the 7 α1 subunits mediate different or partially redundant functions or whether different α1/α2δ combinations regulate different aspects of VGCC function. This study capitalizes on the relatively simpler situation in the Drosophila genetic model that contains only two genes for HVA calcium channels, one Cav1 homolog and one Cav2 homolog, both with well-described functions in different compartments of identified motoneurons. We find that both dα2δ1 and dα2δ3 (stj) are broadly but differently expressed in the nervous system. Both are expressed in motoneurons, but with differential subcellular localization. Functional analysis reveals that dα2δ3 is required for normal Cav1 and Cav2 current amplitudes and for correct Cav2 channel function in all neuronal compartments, axon terminal, axon, and somatodendritic domain. By contrast, dα2δ1 does not affect Cav1 or Cav2 current amplitudes or presynaptic function, but it is required for correct Cav2 channel allocation to the axonal versus the dendritic domain. Therefore, different α2δ subunits are required in the same neurons to precisely regulate distinctly different functions of HVA calcium channels, which is in accord with specific α2δ mutations causing different brain diseases.Significance StatementCalcium influx through the pore forming α1-subunit of voltage gated calcium channels serves essential neuronal functions, such as synaptic vesicle release, control of action potential shape and frequencies, synaptic input computations, and transcriptional control. Localization and function of α1-calcium channel subunits depend on interactions with α2δ accessory subunits. Here we present in vivo analysis of Drosophila motoneurons revealing that different α2δ subunits independently regulate distinctly different aspects of calcium channel function in the same neuron, such as current amplitude and dendritic versus axonal channel localization. Our findings start unraveling how different α1/α2δ combinations regulate functional calcium channel diversity in different sub-neuronal compartments, and may provide an entry point toward understanding how mutations of different α2δ genes underlie brain diseases.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Francesca Vallese ◽  
Cristina Catoni ◽  
Domenico Cieri ◽  
Lucia Barazzuol ◽  
Omar Ramirez ◽  
...  

AbstractMembrane contact sites between virtually any known organelle have been documented and, in the last decades, their study received momentum due to their importance for fundamental activities of the cell and for the subtle comprehension of many human diseases. The lack of tools to finely image inter-organelle proximity hindered our understanding on how these subcellular communication hubs mediate and regulate cell homeostasis. We develop an improved and expanded palette of split-GFP-based contact site sensors (SPLICS) for the detection of single and multiple organelle contact sites within a scalable distance range. We demonstrate their flexibility under physiological conditions and in living organisms.


Contact ◽  
2021 ◽  
Vol 4 ◽  
pp. 251525642110166
Author(s):  
Verena Kohler ◽  
Sabrina Büttner

Cellular adaptation to stress and metabolic cues requires a coordinated response of different intracellular compartments, separated by semipermeable membranes. One way to facilitate interorganellar communication is via membrane contact sites, physical bridges between opposing organellar membranes formed by an array of tethering machineries. These contact sites are highly dynamic and establish an interconnected organellar network able to quickly respond to external and internal stress by changing size, abundance and molecular architecture. Here, we discuss recent work on nucleus-vacuole junctions, connecting yeast vacuoles with the nucleus. Appearing as small, single foci in mitotic cells, these contacts expand into one enlarged patch upon nutrient exhaustion and entry into quiescence or can be shaped into multiple large foci essential to sustain viability upon proteostatic stress at the nuclear envelope. We highlight the remarkable plasticity and rapid remodelling of these contact sites upon metabolic or proteostatic stress and their emerging importance for cellular fitness.


Sign in / Sign up

Export Citation Format

Share Document