Nicotinamide Phosphoribosyltransferase Inhibitors Selectively Induce Apoptosis of AML Stem Cells by Disrupting Lipid Homeostasis

2020 ◽  
Author(s):  
Amit Subedi ◽  
Qiang Liu ◽  
David Sharon ◽  
Severine Cathelin ◽  
Changjiang Xu ◽  
...  
2021 ◽  
Author(s):  
Amit Subedi ◽  
Qiang Liu ◽  
Dhanoop M. Ayyathan ◽  
David Sharon ◽  
Severine Cathelin ◽  
...  

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 25-26
Author(s):  
Amit Subedi ◽  
Qiang Liu ◽  
David Sharon ◽  
Severine Cathelin ◽  
Gary D Bader ◽  
...  

Current chemotherapeutic regimens for acute myeloid leukemia (AML) often fail to eliminate leukemic stem cells (LSCs) which contribute to disease relapse. A key step towards the development of more effective therapies is the identification of vulnerabilities that are unique to LSCs. Here, we sought to identify LSC-specific metabolic dependencies by performing a flow cytometry-based screen of 110 metabolically-focused drugs against a primary human AML sample. This sample harbored distinct subsets defined by CD34 and CD38 expression, and LSC activity assayed by xenotransplantation was restricted to the CD34+CD38- fraction. Through this screen, we found that inhibitors of nicotinamide phosphoribosyltransferase (NAMPT), which catalyzes the rate-limiting step in the NAD+ salvage pathway, preferentially depleted CD34+CD38- cells, implicating NAMPT inhibitors as potential anti-LSC agents. To evaluate the therapeutic potential of NAMPT inhibitors, we focused on KPT-9274, a small-molecule NAMPT inhibitor currently under clinical development for other cancer types. Treatment with KPT-9274 depleted the CD34+CD38- fraction across multiple primary human AML samples through induction of apoptosis. The preferential sensitivity of CD34+CD38- cells to NAMPT inhibition correlated with a lower basal level of intracellular NAD+ and greater dependency on NAMPT activity for NAD+ generation relative to the other fractions. In contrast, normal CD34+ HSPCs were largely resistant to the cytotoxic effects of KPT-9274 due to their capacity to utilize the Preiss-Handler pathway for NAD+ generation. Consistent with the in vitro findings, KPT-9274 treatment significantly reduced LSC activity as determined by secondary engraftment potential in 2 of 3 patient-derived xenograft (PDX) models of human AML and had minimal impact on normal HSC activity in mice engrafted cord blood cells. To gain mechanistic insights into how NAMPT inhibition induces cell death, we performed transcriptomic analysis of sorted CD34+CD38- cells treated with KPT-9274. This analysis revealed a striking upregulation of genes involved in cholesterol and lipid synthesis including the stearoyl-CoA desaturase (SCD) gene. The upregulated genes were highly enriched for known targets of the sterol regulatory element binding protein (SREBP) transcription factors. Functional studies demonstrated that this transcriptional response was protective against the cytotoxic effect of NAMPT inhibition in AML cells. To uncover the metabolic basis of this protective effect, we performed global metabolomic profiling of AML cells treated with KPT-9274 and observed a decrease in the ratio of monounsaturated fatty acids (MUFAs) to saturated fatty acids (SFAs) upon drug treatment. This drop in MUFA:SFA ratio reflected a reduction in SCD activity which catalyzes the desaturation of SFAs to MUFAs in a NADPH-dependent reaction. Since depletion of intracellular MUFAs could trigger apoptosis, we hypothesized that the SREBP response might protect against cell death through upregulation of SCD activity and consequent increase in MUFA synthesis. In line with this hypothesis, we found that exogenous oleic acid, a MUFA, completely rescued cell death induced by KPT-9274, while treatment with SCD inhibitors sensitized AML cells to the cytotoxic effects of NAMPT inhibition. To explore the translational application of our findings, we tested whether dipyridamole (DP), a clinically approved anti-platelet agent with inhibitory activity against SREBP signaling, can be repurposed to enhance the anti-leukemic effects of KPT-9274. We showed that treatment with DP, at non-toxic concentrations, potentiated the cytotoxicity of KPT-9274 against AML cells in vitro. Importantly, in vivo combination treatment with KPT-9274 and DP effectively targeted LSC activity in a PDX model that was refractory to KPT-9274 as single agent. In summary, our findings demonstrate that LSCs are preferentially dependent on NAMPT activity for survival over non-LSCs and normal HSCs. We further uncovered that NAMPT inhibition results in dysregulation of lipid homeostasis and induces a lipogenic response coordinated by SREBPs that protects AML cells against NAD+ depletion. These findings offer insights into drug combination strategies to enhance the efficacy of NAMPT inhibitors and provide the rationale for testing NAMPT inhibitors in the treatment of AML in clinical trials. Disclosures Dick: Bristol-Myers Squibb/Celgene: Research Funding. Wang:Trilium therapeutics: Patents & Royalties: There is an existing license agreement between TTI and University Health Network and J.C.Y.W. may be entitled to receive financial benefits further to this license and in accordance with UHN's intellectual property policies. .


2021 ◽  
Vol 22 (3) ◽  
pp. 1330
Author(s):  
María Julia Barisón ◽  
Isabela Tiemy Pereira ◽  
Anny Waloski Robert ◽  
Bruno Dallagiovanna

Understanding the cell differentiation process involves the characterization of signaling and regulatory pathways. The coordinated action involved in multilevel regulation determines the commitment of stem cells and their differentiation into a specific cell lineage. Cellular metabolism plays a relevant role in modulating the expression of genes, which act as sensors of the extra-and intracellular environment. In this work, we analyzed mRNAs associated with polysomes by focusing on the expression profile of metabolism-related genes during the cardiac differentiation of human embryonic stem cells (hESCs). We compared different time points during cardiac differentiation (pluripotency, embryoid body aggregation, cardiac mesoderm, cardiac progenitor and cardiomyocyte) and showed the immature cell profile of energy metabolism. Highly regulated canonical pathways are thoroughly discussed, such as those involved in metabolic signaling and lipid homeostasis. We reveal the critical relevance of retinoic X receptor (RXR) heterodimers in upstream retinoic acid metabolism and their relationship with thyroid hormone signaling. Additionally, we highlight the importance of lipid homeostasis and extracellular matrix component biosynthesis during cardiomyogenesis, providing new insights into how hESCs reorganize their metabolism during in vitro cardiac differentiation.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Tzyy Yue Wong ◽  
Ying-Hui Chen ◽  
Szu-Heng Liu ◽  
Mairim Alexandra Solis ◽  
Chen-Hsiang Yu ◽  
...  

Our previous results showed that hyaluronan (HA) preserved human placenta-derived mesenchymal stem cells (PDMSC) in a slow cell cycling mode similar to quiescence, the pristine state of stem cellsin vivo, and HA was found to prevent murine adipose-derived mesenchymal stem cells from senescence. Here, stable isotope labeling by amino acid in cell culture (SILAC) proteomic profiling was used to evaluate the effects of HA on aging phenomenon in stem cells, comparing (1) old and young passage PDMSC cultured on normal tissue culture surface (TCS); (2) old passage on HA-coated surface (CHA) compared to TCS; (3) old and young passage on CHA. The results indicated that senescence-associated protein transgelin (TAGLN) was upregulated in old TCS. Protein CYR61, reportedly senescence-related, was downregulated in old CHA compared to old TCS. The SIRT1-interacting Nicotinamide phosphoribosyltransferase (NAMPT) increased by 2.23-fold in old CHA compared to old TCS, and is 0.48-fold lower in old TCS compared to young TCS. Results also indicated that components of endoplasmic reticulum associated degradation (ERAD) pathway were upregulated in old CHA compared to old TCS cells, potentially for overcoming stress to maintain cell function and suppress senescence. Our data points to pathways that may be targeted by HA to maintain stem cells youth.


2010 ◽  
Vol 30 (6) ◽  
pp. 455-455 ◽  
Author(s):  
Dongyan Shi ◽  
Dan Ma ◽  
Feiqing Dong ◽  
Chen Zong ◽  
Liyue Liu ◽  
...  

2010 ◽  
Vol 34 (8) ◽  
pp. S39-S39
Author(s):  
Dewu Liu ◽  
Honglan Xiong ◽  
Yuangui Mao ◽  
Peixin Huang ◽  
Jianping Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document