Benchmarking of FeNi Electric Arc Furnace Operations for Developing Furnace Design Parameters for Lateritic Ores in the Intermediate SiO2/MgO Range of between 2.2 and 2.7

2021 ◽  
Author(s):  
Petri Palovaara ◽  
Sauli Pisila ◽  
Matti Sakaranaho ◽  
Mikael Lindvall ◽  
Janne Tikka
Author(s):  
Eugenio G. M. Brusa ◽  
Nicola Bosso ◽  
Nicolò Zampieri ◽  
Stefano Morsut ◽  
Maurizio Picciotto

Prediction of structural dynamics of the Electric Arc Furnace (EAF) is rather difficult, because of a number of phenomena occurring during the scrap melting process. Three large electrodes, corresponding to each phase of a AC circuit, are lowered by the main mast towards the scrap to activate the melting process, induced by the electric arc. Electric current fed to each electrode produces a strong magnetic field and applies an electromechanical force on the other electrodes. Arc voltage looks irregular upon time, even because of the scrap motion within the vessel and temperature growth. The vertical position of the mast is controlled by an hydraulic actuator. Nevertheless, a heavy vibration of the structures affects the regularity of the melting process. A fully coupled model of the whole system is herein proposed, through a multi-physics approach. A first analytical approach, describing the electric circuit of the whole system, is implemented into a Multi Body Dynamics (MBD) model of the EAF, while a reduced Finite Element Method (FEM) model of the flexible structures is used for a preliminary optimization of the design parameters. Electromechanical forces due to the mutual induction among the electrodes are computed and the dynamic response of the system is investigated. Proposed model allows a first refinement of the EAF design, although a complete experimental validation on the real machine has to be performed, in spite of problems due the extremely difficult accessibility of structures during the melting process.


Author(s):  
J. R. Porter ◽  
J. I. Goldstein ◽  
D. B. Williams

Alloy scrap metal is increasingly being used in electric arc furnace (EAF) steelmaking and the alloying elements are also found in the resulting dust. A comprehensive characterization program of EAF dust has been undertaken in collaboration with the steel industry and AISI. Samples have been collected from the furnaces of 28 steel companies representing the broad spectrum of industry practice. The program aims to develop an understanding of the mechanisms of formation so that procedures to recover residual elements or recycle the dust can be established. The multi-phase, multi-component dust particles are amenable to individual particle analysis using modern analytical electron microscopy (AEM) methods.Particles are ultrasonically dispersed and subsequently supported on carbon coated formvar films on berylium grids for microscopy. The specimens require careful treatment to prevent agglomeration during preparation which occurs as a result of the combined effects of the fine particle size and particle magnetism. A number of approaches to inhibit agglomeration are currently being evaluated including dispersal in easily sublimable organic solids and size fractioning by centrifugation.


2016 ◽  
Vol 104 (1) ◽  
pp. 102 ◽  
Author(s):  
Valentina Colla ◽  
Filippo Cirilli ◽  
Bernd Kleimt ◽  
Inigo Unamuno ◽  
Silvia Tosato ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 732
Author(s):  
Botao Xue ◽  
Lingzhi Yang ◽  
Yufeng Guo ◽  
Feng Chen ◽  
Shuai Wang ◽  
...  

A novel direct-current electric arc furnace (DC-EAF) was designed and constructed in this study for experimentally investigating high-titanium slag smelting, with an emphasis on addressing the issues of incomplete separation of metal and slag as well as poor insulation effects. The mechanical components (crucible, electrode, furnace lining, etc.) were designed and developed, and an embedded crucible design was adopted to promote metal-slag separation. The lining and bottom thicknesses of the furnace were determined via calculation using the heat balance equations, which improved the thermal insulation. To monitor the DC-EAF electrical parameters, suitable software was developed. For evaluating the performance of the furnace, a series of tests were run to determine the optimal coke addition under the conditions of constant temperature (1607 °C) and melting time (90 min). The results demonstrated that for 12 kg of titanium-containing metallized pellets, 4% coke was the most effective for enrichment of TiO2 in the high-titanium slag, with the TiO2 content reaching 93.34%. Moreover, the DC-EAF met the design requirements pertaining to lining thickness and facilitated metal-slag separation, showing satisfactory performance during experiments.


Sign in / Sign up

Export Citation Format

Share Document