Inverse Dynamics Analysis of 6-dof Robotic Manipulator (UR5) by Forward & Backward Recursion

2021 ◽  
Author(s):  
Rajul Kumar
2000 ◽  
Vol 122 (4) ◽  
pp. 437-445 ◽  
Author(s):  
Behzad Dariush ◽  
Hooshang Hemami ◽  
Mohamad Parnianpour

Joint moment estimation using the traditional inverse dynamics analysis presents two challenging problems, which limit its reliability. First, the quality of the computed moments depends directly on unreliable estimates of the segment accelerations obtained numerically by differentiating noisy marker measurements. Second, the representation of joint moments from combined video and force plate measurements belongs to a class of ill-posed problems, which does not possess a unique solution. This paper presents a well-posed representation derived from an embedded constraint equation. The proposed method, referred to as the embedded constraint representation (ECR), provides unique moment estimates, which satisfy all measurement constraints and boundary conditions and require fewer acceleration components than the traditional inverse dynamics method. Specifically, for an n-segment open chain planar system, the ECR requires n−3 acceleration components as compared to 3n−1 components required by the traditional (from ground up) inverse dynamics analysis. Based on a simulated experiment using a simple three-segment model, the precision of the ECR is evaluated at different noise levels and compared to the traditional inverse dynamics technique. At the lowest noise levels, the inverse dynamics method is up to 50 percent more accurate while at the highest noise levels the ECR method is up to 100 percent more accurate. The ECR results over the entire range of noise levels reveals an average improvement on the order 20 percent in estimating the moments distal to the force plate and no significant improvement in estimating moments proximal to the force plate. The new method is particularly advantageous in a combined video, force plate, and accelerometery sensing strategy. [S0148-0731(00)01904-X]


2020 ◽  
Vol 100 ◽  
pp. 109412
Author(s):  
Romain Van Hulle ◽  
Cédric Schwartz ◽  
Vincent Denoël ◽  
Jean-Louis Croisier ◽  
Bénédicte Forthomme ◽  
...  

2012 ◽  
Vol 2012 (0) ◽  
pp. _J027032-1-_J027032-5
Author(s):  
Yuichiro HAYASHI ◽  
Nobutaka TSUJIUCHI ◽  
Takayuki KOIZUMI ◽  
Yasushi MATSUDA ◽  
Youtaro TSUCHIYA

Author(s):  
Miguel Silva ◽  
Jorge Ambro´sio

The use of inverse dynamics methodologies for the evaluation of intersegmental reaction forces and the moments-of-force at the anatomical joints, in the framework of gait analysis, not only requires that appropriate biomechanical models are used but also that kinematic and kinetic data sets are available. This paper discusses the quality of the results of the inverse dynamics analysis with respect to the filtering procedures used and the kinematic consistency of the position, velocity and acceleration data. A three-dimensional whole body response biomechanical model based on a multibody formulation with natural coordinates is used. The model has 16 anatomical segments that are described using 33 rigid bodies in a total of 44 degrees-of-freedom. In biomechanical applications, one of the advantages of the current formulation is that the set of anatomical points used to reconstruct the spatial motion of the subject is also used to construct the set of natural coordinates that describe the biomechanical model itself. Based on the images collected by four synchronized video cameras, the three-dimensional trajectories of the anatomical points are reconstructed using standard photogrammetry techniques and Direct Linear Transformations. The trajectories obtained are then filtered in order to reduce the noise levels introduced during the reconstruction procedure using 2nd order Butterworth low-pass filters with properly chosen cut-off frequencies. The filtered data is used in the inverse dynamics analysis either directly or after being modified in order to ensure its consistency with the biomechanical model’s kinematic constraints. It is also shown that the use of velocities and accelerations consistent with the kinematic constraints or those obtained through the time derivatives of the spline interpolation curves of the reconstructed trajectories lead to similar results.


Sign in / Sign up

Export Citation Format

Share Document