Nanobubble Formation from Ionic Vacancies in an Electrode Reaction on a Fringed Disk Electrode Under a Uniform Vertical Magnetic Field -2. Measurement of the Angular Velocity of a Vertical Magnetohydrodynamic (MHD) Flow by the Microbubbles Originating from Ionic Vacancies

2021 ◽  
Author(s):  
Satoshi Takagi ◽  
Takashi Asada ◽  
Yoshinobu Oshikiri ◽  
Makoto Miura ◽  
Ryoichi Morimoto ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Shihhao Yeh ◽  
Tsai-Jung Chen ◽  
Jik Chang Leong

The steady-state problem of a magnetic fluid filling a porous annulus between two cylindrical walls under the influence of a nonuniform radially outward magnetic field has been investigated. The cylindrical walls are either electrically perfectly insulated or electrically perfectly conducting. The permeability of the porous annulus increases with its radial location. The governing partial differential equations were derived carefully and closed form solutions for the profiles of the velocity component and the induced magnetic component were obtained. The effect of the strength of the externally applied magnetic field, the permeability of the porous annulus, and the conductivity of the cylindrical walls were examined through the angular velocity components, as well as the induced magnetic field.


2021 ◽  
Vol 33 (3) ◽  
pp. 034130
Author(s):  
Ankan Banerjee ◽  
Manojit Ghosh ◽  
Lekha Sharma ◽  
Pinaki Pal

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tarek N. Abdelhameed

AbstractThis article examines the entropy generation in the magnetohydrodynamics (MHD) flow of Newtonian fluid (water) under the effect of applied magnetic in the absence of an induced magnetic field. More precisely, the flow of water is considered past an accelerated plate such that the fluid is receiving constant heating from the initial plate. The fluid disturbance away from the plate is negligible, therefore, the domain of flow is considered as semi-infinite. The flow and heat transfer problem is considered in terms of differential equations with physical conditions and then the corresponding equations for entropy generation and Bejan number are developed. The problem is solved for exact solutions using the Laplace transform and finite difference methods. Results are displayed in graphs and tables and discussed for embedded flow parameters. Results showed that the magnetic field has a strong influence on water flow, entropy generation, and Bejan number.


2004 ◽  
Vol 93 (16) ◽  
Author(s):  
S. H. Müller ◽  
A. Fasoli ◽  
B. Labit ◽  
M. McGrath ◽  
M. Podestà ◽  
...  

1967 ◽  
Vol 45 (4) ◽  
pp. 1481-1495 ◽  
Author(s):  
Myer Bloom ◽  
Eric Enga ◽  
Hin Lew

A successful transverse Stern–Gerlach experiment has been performed, using a beam of neutral potassium atoms and an inhomogeneous time-dependent magnetic field of the form[Formula: see text]A classical analysis of the Stern–Gerlach experiment is given for a rotating inhomogeneous magnetic field. In general, when space quantization is achieved, the spins are quantized along the effective magnetic field in the reference frame rotating with angular velocity ω about the z axis. For ω = 0, the direction of quantization is the z axis (conventional Stern–Gerlach experiment), while at resonance (ω = −γH0) the direction of quantization is the x axis in the rotating reference frame (transverse Stern–Gerlach experiment). The experiment, which was performed at 7.2 Mc, is described in detail.


1998 ◽  
Vol 356 ◽  
pp. 221-257 ◽  
Author(s):  
P. A. DAVIDSON

Arnol'd developed two distinct yet closely related approaches to the linear stability of Euler flows. One is widely used for two-dimensional flows and involves constructing a conserved functional whose first variation vanishes and whose second variation determines the linear (and nonlinear) stability of the motion. The second method is a refinement of Kelvin's energy principle which states that stable steady Euler flows represent extremums in energy under a virtual displacement of the vorticity field. The conserved-functional (or energy-Casimir) method has been extended by several authors to more complex flows, such as planar MHD flow. In this paper we generalize the Kelvin–Arnol'd energy method to two-dimensional inviscid flows subject to a body force of the form −ϕ∇f. Here ϕ is a materially conserved quantity and f an arbitrary function of position and of ϕ. This encompasses a broad class of conservative flows, such as natural-convection planar and poloidal MHD flow with the magnetic field trapped in the plane of the motion, flows driven by electrostatic forces, swirling recirculating flow, self-gravitating flows and poloidal MHD flow subject to an azimuthal magnetic field. We show that stable steady motions represent extremums in energy under a virtual displacement of ϕ and of the vorticity field. That is, d1E=0 at equilibrium and whenever d2E is positive or negative definite the flow is (linearly) stable. We also show that unstable normal modes must have a spatial structure which satisfies d2E=0. This provides a single stability test for a broad class of flows, and we describe a simple universal procedure for implementing this test. In passing, a new test for linear stability is developed. That is, we demonstrate that stability is ensured (for flows of the type considered here) whenever the Lagrangian of the flow is a maximum under a virtual displacement of the particle trajectories, the displacement being of the type normally associated with Hamilton's principle. A simple universal procedure for applying this test is also given. We apply our general stability criteria to a range of flows and recover some familiar results. We also extend these ideas to flows which are subject to more than one type of body force. For example, a new stability criterion is obtained (without the use of Casimirs) for natural convection in the presence of a magnetic field. Nonlinear stability is also considered. Specifically, we develop a nonlinear stability criterion for planar MHD flows which are subject to isomagnetic perturbations. This differs from previous criteria in that we are able to extend the linear criterion into the nonlinear regime. We also show how to extend the Kelvin–Arnol'd method to finite-amplitude perturbations.


Author(s):  
Supriyo Paul ◽  
Krishna Kumar

Stability analysis of parametrically driven surface waves in liquid metals in the presence of a uniform vertical magnetic field is presented. Floquet analysis gives various subharmonic and harmonic instability zones. The magnetic field stabilizes the onset of parametrically excited surface waves. The minima of all the instability zones are raised by a different amount as the Chandrasekhar number is raised. The increase in the magnetic field leads to a series of bicritical points at a primary instability in thin layers of a liquid metal. The bicritical points involve one subharmonic and another harmonic solution of different wavenumbers. A tricritical point may also be triggered as a primary instability by tuning the magnetic field.


Sign in / Sign up

Export Citation Format

Share Document