Numerical Research of the Effect of Contact Number on Particle Heat Transfer in Direct Heat Extraction Packed Bed by Removing Selected Particles

2021 ◽  
Author(s):  
Kai Zhang ◽  
Bin Zheng ◽  
Peng Sun ◽  
Yingkai Shen ◽  
Tengfei Gao ◽  
...  
2021 ◽  
Vol 11 (2) ◽  
pp. 751
Author(s):  
Xuefeng Gao ◽  
Yanjun Zhang ◽  
Zhongjun Hu ◽  
Yibin Huang

As fluid passes through the fracture of an enhanced geothermal system, the flow direction exhibits distinct angular relationships with the geometric profile of the rough fracture. This will inevitably affect the heat transfer characteristics in the fracture. Therefore, we established a hydro-thermal coupling model to study the influence of the fluid flow direction on the heat transfer characteristics of granite single fractures and the accuracy of the numerical model was verified by experiments. Results demonstrate a strong correlation between the distribution of the local heat transfer coefficient and the fracture morphology. A change in the flow direction is likely to alter the transfer coefficient value and does not affect the distribution characteristics along the flow path. Increasing injection flow rate has an enhanced effect. Although the heat transfer capacity in the fractured increases with the flow rate, a sharp decline in the heat extraction rate and the total heat transfer coefficient is also observed. Furthermore, the model with the smooth fracture surface in the flow direction exhibits a higher heat transfer capacity compared to that of the fracture model with varying roughness. This is attributed to the presence of fluid deflection and dominant channels.


AIChE Journal ◽  
1965 ◽  
Vol 11 (1) ◽  
pp. 130-132 ◽  
Author(s):  
John D. Gabor ◽  
Bruce E. Stangeland ◽  
William J. Mecham

Author(s):  
L D Clark ◽  
I Rosindale ◽  
K Davey ◽  
S Hinduja ◽  
P J Dooling

The effect of boiling on the rate of heat extraction by cooling channels employed in pressure die casting dies is investigated. The cooling effect of the channels is simulated using a model that accounts for subcooled nucleate boiling and transitional film boiling as well as forced convection. The boiling model provides a continuous relationship between the rate of heat transfer and temperature, and can be applied to surfaces where forced convection, subcooled nucleate boiling and transitional film boiling are taking place in close proximity. The effects of physical parameters such as flow velocity, degree of subcooling, system pressure and bulk temperature are taken into account. Experimental results are obtained using a rig that simulates the pressure die casting process. The results are compared with the model predictions and are found to show good agreement. Instrumented field tests, on an industrial die casting machine, are also reported. These tests show the beneficial effects of boiling heat transfer in the pressure die casting process, including a 75 per cent increase in the production rate for the test component.


1957 ◽  
Vol 21 (6) ◽  
pp. 342-350 ◽  
Author(s):  
S. Yagi ◽  
D. Kunii ◽  
Y. Shimomura
Keyword(s):  

2018 ◽  
Vol 26 (2) ◽  
pp. 228-237 ◽  
Author(s):  
Baolin Hou ◽  
Renming Ye ◽  
Yanqiang Huang ◽  
Xiaodong Wang ◽  
Tao Zhang

Author(s):  
P. Hashchuk ◽  
S. Nikipchuk

Deterministic and, in a certain sense, "linear" interpretation of the world often leads to the recognition of the fact that the more accurate model we need, the more complex it must be (as in case of a formalized reproduction of the real system, or the implementation of the desired system properties in the process of formal synthesis of something new). Instead, following the principle of synergy leads to the conviction that there is always a certain model of optimal complexity e.g. in the synthesis of the new system, and in the analysis of real system peculiarities. However, the model of reality could be a part of this reality that is included to the carefully structured formal description. Since we cannot penetrate into the working space of the serial engine while testing, we should use a test engine of a special construction when the working space corresponds to the laws of similarity and this engine will serve as a model of the working space of the serial engine.     The study illustrates the effectiveness of hard-soft technology while investigating the peculiarities of heat generation and heat consumption in the internal combustion engine, which will combine mathematic and algorithmic means of modelling as well as the means of real simulation. The necessity of hard-soft technology introduction arises from the excessive complexity of thermal phenomena occurring in the internal combustion engine (ICE), and the inability to fully subordinate these phenomena to existing analytical models. The combination of original and analytical properties, reality and virtual reality while modelling the processes in internal combustion engines allows us to substantially improve the quality of information in the process of design and engine construction. Taking this into consideration, there are some natural grounds to apply principles of heuristic self-organization, self-learning, means of the neural networks, etc. in the design implementation. The study demonstrates the example of modelling the real working space of ICE with the forced start that serves as a supplement to the mathematical algorithmic two-zone model of heat generation / heat consumption / heat extraction. The basic information that can be obtained by means of hard-soft technology in the framework of, for example, the two-zone model of the work process in the gasoline engine, is the variability with the change in the angle of rotation of the crankshaft of the engine: absolute pressure (indicative diagram); absolute temperature; heat transmitted inside the cylinder between zones; coefficient of excess air; coefficient of heat transfer; intensity of heat extraction in the process of combustion of fuel; intensity of heat transfer through the walls of the cylinde


Sign in / Sign up

Export Citation Format

Share Document