NUMERICAL RESEARCH OF HEAT TRANSFER AUGMENTATION IN PLATE FIN HEAT EXCHANGERS WITH DIFFERENT FIN TYPES

Author(s):  
KORAY KARABULUT ◽  
Ertan BUYRUK
Volume 3 ◽  
2004 ◽  
Author(s):  
Walter Grassi ◽  
Daniele Testi

The thermofluid dynamic effects of ion injection from sharp metallic points added perpendicularly to the inner wire of a short horizontal annulus were experimentally investigated. A dielectric liquid (FC-72 by 3M) was weakly forced to flow in the duct, which was uniformly heated on the outer wall. A d.c. voltage as high as 22 kV was applied to the inner electrode, while the heated wall was grounded. Both the laminar and the turbulent mixed convection regimes were obtained, varying the imposed flow rate. Once an electric field is applied, the flow is dramatically modified by the jets of charged particles, which transfer their momentum to the neutral adjacent ones. Different injection strengths were obtained on the emitters, because the shape of the point tips was not controlled at the micro-scale. Nusselt number distributions were obtained azimuthally and longitudinally, monitoring the wall temperatures. In all cases, heat transfer turned out greatly enhanced in the proximity of the emitters, without a significant increase in pressure drop through the test section and with a negligible Joule heating, making this technique very attractive for application in compact heat exchangers.


Author(s):  
Shankar Krishnan ◽  
Steve Leith ◽  
Terry Hendricks

Gas and air-side heat transfer is ubiquitous throughout many technological sectors, including HVAC (heating, ventilating, and air conditioning) systems, thermo-electric power generators and coolers, renewable energy, electronics and vehicle cooling, and forced-draft cooling in the petrochemical and power industries. The poor thermal conductivity and low heat capacity of air causes air-side heat transfer to typically dominate heat transfer resistance even with the use of extended area structures. In this paper, we report design, analysis, cost modeling, fabrication, and performance characterization of micro-honeycombs for gas-side heat transfer augmentation in thermoelectric (TE) cooling and power systems. Semi-empirical model aided by experimental validation was undertaken to characterize fluid flow and heat transfer parameters. We explored a variety of polygonal shapes to optimize the duct shape for air-side heat transfer enhancement. Predictions using rectangular micro-honeycomb heat exchangers, among other polygonal shapes, suggest that these classes of geometries are able to provide augmented heat transfer performance in high-temperature energy recovery streams and low-temperature cooling streams. Based on insight gained from theoretical models, rectangular micro-honeycomb heat exchangers that can deliver high performance were fabricated and tested. High- and low-cost manufacturing prototype designs with different thermal performance expectations were fabricated to explore the cost-performance design domain. Simple metrics were developed to correlate heat transfer performance with heat exchanger cost and weight and define optimum design points. The merits of the proposed air-side heat transfer augmentation approach are also discussed within the context of relevant thermoelectric power and cooling systems.


Author(s):  
Michael J. Lawson ◽  
Paul Sanders ◽  
Karen A. Thole

Louvered fins are used in compact heat exchangers to increase heat transfer by interrupting thermal boundary layer growth thereby increasing the convective heat transfer coefficients and reducing the air side resistance. Recently, it has been experimentally shown that heat transfer along the tube wall can be augmented by the placement of delta winglets on the louvers at an angle to the flow. The focus of this combined experimental and computational study is to determine the effect of realistic winglets on tube wall heat transfer. Comparisons of the computational simulations were made to the experimental results, which were obtained using a twenty times scaled model. Winglet performance characteristics were studied on solid louvers and pierced louvers whereby the latter simulates what would occur for a manufactured louver having a winglet. For a solid louver having a winglet, the tube wall heat transfer augmentation was found to be as high as 5.4%. Pierced louver cases were observed to produce slightly higher heat transfer augmentations than solid louver cases. Computational results suggest that the mechanism behind tube wall heat transfer augmentation is flow redirection and not winglet induced vortices.


2005 ◽  
Vol 128 (3) ◽  
pp. 283-289 ◽  
Author(s):  
Walter Grassi ◽  
Daniele Testi

The thermofluid-dynamic effects of ion injection from sharp metallic points added perpendicularly to the inner wire of a short horizontal annulus were experimentally investigated. A dielectric liquid (FC-72 by 3M) was weakly forced to flow in the duct, which was uniformly heated on the outer wall. A dc voltage as high as 22kV was applied to the inner electrode, while the heated wall was grounded. Both the laminar and the turbulent mixed-convection regimes were obtained, varying the imposed flow rate. Once an electric field is applied, the flow is dramatically modified by the jets of charged particles, which transfer their momentum to the neutral adjacent ones. Different injection strengths were obtained on the emitters, because the shape of the point tips was not controlled at the microscale. Nusselt number distributions were obtained azimuthally and longitudinally, monitoring the wall temperatures. In all cases, heat transfer turned out greatly enhanced in the proximity of the emitters, without a significant increase in pressure drop through the test section and with a negligible Joule heating, making this technique very attractive for application in compact heat exchangers.


Sign in / Sign up

Export Citation Format

Share Document