Infinite sums in totally ordered abelian groups

2019 ◽  
Vol 12 (2) ◽  
pp. 281-300
Author(s):  
Greg Oman ◽  
Caitlin Randall ◽  
Logan Robinson
Keyword(s):  
Author(s):  
Don Brunker ◽  
Denis Higgs

AbstractA Σ-group is an abelian group on which is given a family of infinite sums having properties suggested by, but weaker than, those which hold for absolutely convergent series of real or complex numbers. Two closely related questions are considered. The first concerns the construction of a Σ-group from an arbitrary abelian group on which certain series are given to be summable, certain of these series being required to sum to zero. This leads to a Σ-theoretic construction of R from Q and in general of the completion of an arbitrary metrizable abelian group (with the associated unconditional sums) from that group. The second question is whether, in a given Σ-group, the values of the infinite sums may be determined solely from a knowledge of which series are summable. Such a Σ-group is said to be relatively free and it is shown that all metrizable abelian groups are relatively free.


Author(s):  
Bodan Arsovski

Abstract Extending a result by Alon, Linial, and Meshulam to abelian groups, we prove that if G is a finite abelian group of exponent m and S is a sequence of elements of G such that any subsequence of S consisting of at least $$|S| - m\ln |G|$$ elements generates G, then S is an additive basis of G . We also prove that the additive span of any l generating sets of G contains a coset of a subgroup of size at least $$|G{|^{1 - c{ \in ^l}}}$$ for certain c=c(m) and $$ \in = \in (m) < 1$$ ; we use the probabilistic method to give sharper values of c(m) and $$ \in (m)$$ in the case when G is a vector space; and we give new proofs of related known results.


1978 ◽  
Vol 29 (6) ◽  
pp. 541-544 ◽  
Author(s):  
P. P. Baryshovets

2021 ◽  
Vol 60 (2) ◽  
pp. 2075-2081
Author(s):  
Yuliya Zelenyuk
Keyword(s):  

Author(s):  
Michele Rossi ◽  
Lea Terracini

AbstractLet X be a $$\mathbb {Q}$$ Q -factorial complete toric variety over an algebraic closed field of characteristic 0. There is a canonical injection of the Picard group $$\mathrm{Pic}(X)$$ Pic ( X ) in the group $$\mathrm{Cl}(X)$$ Cl ( X ) of classes of Weil divisors. These two groups are finitely generated abelian groups; while the first one is a free group, the second one may have torsion. We investigate algebraic and geometrical conditions under which the image of $$\mathrm{Pic}(X)$$ Pic ( X ) in $$\mathrm{Cl}(X)$$ Cl ( X ) is contained in a free part of the latter group.


2021 ◽  
pp. 1-36
Author(s):  
ARIE LEVIT ◽  
ALEXANDER LUBOTZKY

Abstract We prove that all invariant random subgroups of the lamplighter group L are co-sofic. It follows that L is permutation stable, providing an example of an infinitely presented such group. Our proof applies more generally to all permutational wreath products of finitely generated abelian groups. We rely on the pointwise ergodic theorem for amenable groups.


Sign in / Sign up

Export Citation Format

Share Document