scholarly journals Equivariant Picard groups and Laurent polynomials

2021 ◽  
Vol 312 (1) ◽  
pp. 219-232
Author(s):  
Vivek Sadhu
2019 ◽  
Vol 31 (3) ◽  
pp. 769-777
Author(s):  
Jairo Z. Gonçalves

Abstract Let k be a field, let {\mathfrak{A}_{1}} be the k-algebra {k[x_{1}^{\pm 1},\dots,x_{s}^{\pm 1}]} of Laurent polynomials in {x_{1},\dots,x_{s}} , and let {\mathfrak{A}_{2}} be the k-algebra {k[x,y]} of polynomials in the commutative indeterminates x and y. Let {\sigma_{1}} be the monomial k-automorphism of {\mathfrak{A}_{1}} given by {A=(a_{i,j})\in GL_{s}(\mathbb{Z})} and {\sigma_{1}(x_{i})=\prod_{j=1}^{s}x_{j}^{a_{i,j}}} , {1\leq i\leq s} , and let {\sigma_{2}\in{\mathrm{Aut}}_{k}(k[x,y])} . Let {D_{i}} , {1\leq i\leq 2} , be the ring of fractions of the skew polynomial ring {\mathfrak{A}_{i}[X;\sigma_{i}]} , and let {D_{i}^{\bullet}} be its multiplicative group. Under a mild restriction for {D_{1}} , and in general for {D_{2}} , we show that {D_{i}^{\bullet}} , {1\leq i\leq 2} , contains a free subgroup. If {i=1} and {s=2} , we show that a noncentral normal subgroup N of {D_{1}^{\bullet}} contains a free subgroup.


Author(s):  
PETER SPACEK

AbstractIn this article we construct Laurent polynomial Landau–Ginzburg models for cominuscule homogeneous spaces. These Laurent polynomial potentials are defined on a particular algebraic torus inside the Lie-theoretic mirror model constructed for arbitrary homogeneous spaces in [Rie08]. The Laurent polynomial takes a similar shape to the one given in [Giv96] for projective complete intersections, i.e., it is the sum of the toric coordinates plus a quantum term. We also give a general enumeration method for the summands in the quantum term of the potential in terms of the quiver introduced in [CMP08], associated to the Langlands dual homogeneous space. This enumeration method generalizes the use of Young diagrams for Grassmannians and Lagrangian Grassmannians and can be defined type-independently. The obtained Laurent polynomials coincide with the results obtained so far in [PRW16] and [PR13] for quadrics and Lagrangian Grassmannians. We also obtain new Laurent polynomial Landau–Ginzburg models for orthogonal Grassmannians, the Cayley plane and the Freudenthal variety.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Vivek Kumar Singh ◽  
Rama Mishra ◽  
P. Ramadevi

Abstract Weaving knots W(p, n) of type (p, n) denote an infinite family of hyperbolic knots which have not been addressed by the knot theorists as yet. Unlike the well known (p, n) torus knots, we do not have a closed-form expression for HOMFLY-PT and the colored HOMFLY-PT for W(p, n). In this paper, we confine to a hybrid generalization of W(3, n) which we denote as $$ {\hat{W}}_3 $$ W ̂ 3 (m, n) and obtain closed form expression for HOMFLY-PT using the Reshitikhin and Turaev method involving $$ \mathrm{\mathcal{R}} $$ ℛ -matrices. Further, we also compute [r]-colored HOMFLY-PT for W(3, n). Surprisingly, we observe that trace of the product of two dimensional $$ \hat{\mathrm{\mathcal{R}}} $$ ℛ ̂ -matrices can be written in terms of infinite family of Laurent polynomials $$ {\mathcal{V}}_{n,t}\left[q\right] $$ V n , t q whose absolute coefficients has interesting relation to the Fibonacci numbers $$ {\mathrm{\mathcal{F}}}_n $$ ℱ n . We also computed reformulated invariants and the BPS integers in the context of topological strings. From our analysis, we propose that certain refined BPS integers for weaving knot W(3, n) can be explicitly derived from the coefficients of Chebyshev polynomials of first kind.


2018 ◽  
Vol 140 (3) ◽  
pp. 333-400 ◽  
Author(s):  
Gerardo Ariznabarreta ◽  
Manuel Mañas ◽  
Alfredo Toledano
Keyword(s):  

10.37236/933 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Gregg Musiker ◽  
James Propp

Fomin and Zelevinsky show that a certain two-parameter family of rational recurrence relations, here called the $(b,c)$ family, possesses the Laurentness property: for all $b,c$, each term of the $(b,c)$ sequence can be expressed as a Laurent polynomial in the two initial terms. In the case where the positive integers $b,c$ satisfy $bc < 4$, the recurrence is related to the root systems of finite-dimensional rank $2$ Lie algebras; when $bc>4$, the recurrence is related to Kac-Moody rank $2$ Lie algebras of general type. Here we investigate the borderline cases $bc=4$, corresponding to Kac-Moody Lie algebras of affine type. In these cases, we show that the Laurent polynomials arising from the recurence can be viewed as generating functions that enumerate the perfect matchings of certain graphs. By providing combinatorial interpretations of the individual coefficients of these Laurent polynomials, we establish their positivity.


10.37236/1826 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Gabriel D. Carroll ◽  
David Speyer

We construct a combinatorial model that is described by the cube recurrence, a quadratic recurrence relation introduced by Propp, which generates families of Laurent polynomials indexed by points in ${\Bbb Z}^3$. In the process, we prove several conjectures of Propp and of Fomin and Zelevinsky about the structure of these polynomials, and we obtain a combinatorial interpretation for the terms of Gale-Robinson sequences, including the Somos-6 and Somos-7 sequences. We also indicate how the model might be used to obtain some interesting results about perfect matchings of certain bipartite planar graphs.


2017 ◽  
Vol 17 (4) ◽  
pp. 717-740 ◽  
Author(s):  
A. G. Khovanskii ◽  
Leonid Monin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document