scholarly journals S07H2 Multi-directional approaches towards understanding the structure and function of the fly neural circuits(Leading Edge in Neuroscience Research: Challenge of Biophysics)

2007 ◽  
Vol 47 (supplement) ◽  
pp. S10
Author(s):  
Kei Ito
2021 ◽  
Author(s):  
Elie Fink ◽  
Matthieu Louis

Animals differ in their appearances and behaviors. While many genetic studies have addressed the origins of phenotypic differences between fly species, we are still lacking a quantitative assessment of the variability in the way different fly species behave. We tackled this question in one of the most robust behaviors displayed by Drosophila: chemotaxis. At the larval stage, Drosophila melanogaster navigate odor gradients by combining four sensorimotor routines in a multilayered algorithm: a modulation of the overall locomotor speed and turn rate; a bias in turning during down-gradient motion; a bias in turning toward the gradient; the local curl of trajectories toward the gradient ("weathervaning"). Using high-resolution tracking and behavioral quantification, we characterized the olfactory behavior of eight closely related species of the Drosophila group in response to 19 ecologically-relevant odors. Significant changes are observed in the receptive field of each species, which is consistent with the rapid evolution of the peripheral olfactory system. Our results reveal substantial inter-species variability in the algorithms directing larval chemotaxis. While the basic sensorimotor routines are shared, their parametric arrangements can vary dramatically across species. The present analysis sets the stage for deciphering the evolutionary relationships between the structure and function of neural circuits directing orientation behaviors in Drosophila.


2019 ◽  
Author(s):  
Jie-Xian Dong ◽  
Yongam Lee ◽  
Michael Kirmiz ◽  
Stephanie Palacio ◽  
Camelia Dumitras ◽  
...  

SUMMARYNanobodies (nAbs) are small, minimal antibodies that have distinct attributes that make them uniquely suited for certain biomedical research, diagnostic and therapeutic applications. Prominent uses include as intracellular antibodies or intrabodies to bind and deliver cargo to specific proteins and/or subcellular sites within cells, and as nanoscale immunolabels for enhanced tissue penetration and improved spatial imaging resolution. Here, we report the generation and validation of nAbs against a set of proteins prominently expressed at specific subcellular sites in brain neurons. We describe a novel hierarchical validation pipeline to systematically evaluate nAbs isolated by phage display for effective and specific use as intrabodies and immunolabels in mammalian cells including brain neurons. These nAbs form part of a robust toolbox for targeting proteins with distinct and highly spatially-restricted subcellular localization in mammalian brain neurons, allowing for visualization and/or modulation of structure and function at those sites.


2021 ◽  
Vol 15 ◽  
Author(s):  
Iain Hunter ◽  
Bramwell Coulson ◽  
Aref Arzan Zarin ◽  
Richard A. Baines

It is difficult to answer important questions in neuroscience, such as: “how do neural circuits generate behaviour?,” because research is limited by the complexity and inaccessibility of the mammalian nervous system. Invertebrate model organisms offer simpler networks that are easier to manipulate. As a result, much of what we know about the development of neural circuits is derived from work in crustaceans, nematode worms and arguably most of all, the fruit fly, Drosophila melanogaster. This review aims to demonstrate the utility of the Drosophila larval locomotor network as a model circuit, to those who do not usually use the fly in their work. This utility is explored first by discussion of the relatively complete connectome associated with one identified interneuron of the locomotor circuit, A27h, and relating it to similar circuits in mammals. Next, it is developed by examining its application to study two important areas of neuroscience research: critical periods of development and interindividual variability in neural circuits. In summary, this article highlights the potential to use the larval locomotor network as a “generic” model circuit, to provide insight into mammalian circuit development and function.


2020 ◽  
Author(s):  
Adam Haber ◽  
Elad Schneidman

ABSTRACTThe mapping of the wiring diagrams of neural circuits promises to allow us to link structure and function of neural networks. Current approaches to analyzing connectomes rely mainly on graph-theoretical tools, but these may downplay the complex nonlinear dynamics of single neurons and networks, and the way networks respond to their inputs. Here, we measure the functional similarity of simulated networks of neurons, by quantifying the similitude of their spiking patterns in response to the same stimuli. We find that common graph theory metrics convey little information about the similarity of networks’ responses. Instead, we learn a functional metric between networks based on their synaptic differences, and show that it accurately predicts the similarity of novel networks, for a wide range of stimuli. We then show that a sparse set of architectural features - the sum of synaptic inputs that each neuron receives and the sum of each neuron’s synaptic outputs - predicts the functional similarity of networks of up to 100 cells, with high accuracy. We thus suggest new architectural design principles that shape the function of neural networks, which conform with experimental evidence of homeostatic mechanisms.


2005 ◽  
Vol 102 (45) ◽  
pp. 16263-16268 ◽  
Author(s):  
A. Di Nardo ◽  
G. Cicchetti ◽  
H. Falet ◽  
J. H. Hartwig ◽  
T. P. Stossel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document