Cariporide attenuates myocardial ischaemia and reperfusion injury and apoptosis in isolated rat hearts

2006 ◽  
Vol 61 (6) ◽  
pp. 637-642 ◽  
Author(s):  
Yun ZHANG ◽  
Junzhu CHEN ◽  
Furong ZHANG ◽  
Qiang XIA
Life Sciences ◽  
2000 ◽  
Vol 67 (2) ◽  
pp. 101-112 ◽  
Author(s):  
Shinji Kaneko ◽  
Kenji Okumura ◽  
Yasushi Numaguchi ◽  
Hideo Matsui ◽  
Kichiro Murase ◽  
...  

1989 ◽  
Vol 256 (2) ◽  
pp. H584-H588 ◽  
Author(s):  
J. M. Brown ◽  
M. A. Grosso ◽  
L. S. Terada ◽  
C. J. Beehler ◽  
K. M. Toth ◽  
...  

Reperfusion with untreated, carbon monoxide-treated, or glutaraldehyde-fixed human erythrocytes (RBC) increased ventricular function and decreased myocardial hydrogen peroxide (H2O2) levels [assessed by H2O2-dependent aminotriazole (AMT) inactivation of myocardial catalase activities] of ischemic, isolated rat hearts. In contrast, reperfusion with RBC that lacked catalase (AMT treated) and/or glutathione (N-ethylmaleimide treated) did not increase ventricular function or decrease myocardial H2O2 levels as much as reperfusion with untreated RBC. By comparison, reperfusion with superoxide dismutase-depleted (diethyldithiocarbamate-treated) or anion channel-inhibited (diisothiocyanodisulfonic acid stilbene-treated) RBC increased ventricular function and decreased myocardial H2O2 levels the same as untreated RBC. The results suggest that catalase and/or glutathione in intact RBC can decrease endogenously generated H2O2 and related reperfusion injury in ischemic, isolated perfused hearts.


2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Hong-Ting Lu ◽  
Ren-Qian Feng ◽  
Jia-Kun Tang ◽  
Jing-Jun Zhou ◽  
Feng Gao ◽  
...  

Endocrinology ◽  
2013 ◽  
Vol 154 (4) ◽  
pp. 1624-1635 ◽  
Author(s):  
Claudia Penna ◽  
Fabio Settanni ◽  
Francesca Tullio ◽  
Letizia Trovato ◽  
Pasquale Pagliaro ◽  
...  

Abstract GHRH stimulates GH synthesis and release from the pituitary and exerts direct effects in extrapituitary tissues. We have previously shown that pretreatment with GHRH reduces cardiomyocyte apoptosis and improves heart function in isolated rat hearts subjected to ischemia/reperfusion (I/R). Here, we determined whether GHRH given at reperfusion reduces myocardial reperfusion injury and investigated the molecular mechanisms involved in GHRH effects. Isolated rat hearts subjected to I/R were treated at the onset of reperfusion with: 1) GHRH; 2) GHRH+GHRH antagonist JV-1-36; 3) GHRH+mitochondrial ATP-dependent potassium channel inhibitor 5-hydroxydecanoate; 4) GHRH+mitochondrial permeability transition pore opener atractyloside; 5) GHRH+ phosphoinositide 3-kinase/Akt inhibitor Wortmannin (WM); and 6) GHRH+signal transducer and activator of transcription-3 inhibitor tyrphostin-AG490 (AG490). GHRH reduced infarct size at the end of reperfusion and reverted contractility dysfunction in I/R hearts. These effects were inhibited by either JV-1-36, 5-hydroxydecanoate, atractylosid, WM, or AG490. Western blot analysis on left ventricles showed GHRH-induced phosphorylation of either the reperfusion injury salvage kinases (RISK), phosphoinositide 3-kinase/Akt, ERK1/2, and glycogen synthase kinase-3β or signal transducer and activator of transcription-3, as part of the survivor activating factor enhancement (SAFE) pathway. GHRH-induced activation of RISK and SAFE pathways was blocked by JV-1-36, WM, and AG490. Furthermore, GHRH increased the phosphorylation of endothelial nitric oxide synthase and AMP-activated protein kinase and preserved postischemic nicotinamide adenine dinucleotide (NAD+) levels. These results suggest that GHRH protects the heart from I/R injury through receptor-mediated mechanisms, leading to activation of RISK and SAFE pathways, which converge on mitochondria and possibly on AMP-activated protein kinase.


Sign in / Sign up

Export Citation Format

Share Document