scholarly journals Maxima of Sums of Heavy-Tailed Random Variables

2002 ◽  
Vol 32 (1) ◽  
pp. 43-55 ◽  
Author(s):  
K.W. Ng ◽  
Q.H. Tang ◽  
H. Yang

AbstractIn this paper, we investigate asymptotic properties of the tail probabilities of the maxima of partial sums of independent random variables. For some large classes of heavy-tailed distributions, we show that the tail probabilities of the maxima of the partial sums asymptotically equal to the sum of the tail probabilities of the individual random variables. Then we partially extend the result to the case of random sums. Applications to some commonly used risk processes are proposed. All heavy-tailed distributions involved in this paper are supposed on the whole real line.

2017 ◽  
Vol 12 (2) ◽  
pp. 412-432 ◽  
Author(s):  
Leonardo Rojas-Nandayapa ◽  
Wangyue Xie

AbstractWe consider phase-type scale mixture distributions which correspond to distributions of a product of two independent random variables: a phase-type random variable Y and a non-negative but otherwise arbitrary random variable S called the scaling random variable. We investigate conditions for such a class of distributions to be either light- or heavy-tailed, we explore subexponentiality and determine their maximum domains of attraction. Particular focus is given to phase-type scale mixture distributions where the scaling random variable S has discrete support – such a class of distributions has been recently used in risk applications to approximate heavy-tailed distributions. Our results are complemented with several examples.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 70
Author(s):  
Mei Ling Huang ◽  
Xiang Raney-Yan

The high quantile estimation of heavy tailed distributions has many important applications. There are theoretical difficulties in studying heavy tailed distributions since they often have infinite moments. There are also bias issues with the existing methods of confidence intervals (CIs) of high quantiles. This paper proposes a new estimator for high quantiles based on the geometric mean. The new estimator has good asymptotic properties as well as it provides a computational algorithm for estimating confidence intervals of high quantiles. The new estimator avoids difficulties, improves efficiency and reduces bias. Comparisons of efficiencies and biases of the new estimator relative to existing estimators are studied. The theoretical are confirmed through Monte Carlo simulations. Finally, the applications on two real-world examples are provided.


2019 ◽  
Vol 7 (1) ◽  
pp. 394-417
Author(s):  
Aboubacrène Ag Ahmad ◽  
El Hadji Deme ◽  
Aliou Diop ◽  
Stéphane Girard

AbstractWe introduce a location-scale model for conditional heavy-tailed distributions when the covariate is deterministic. First, nonparametric estimators of the location and scale functions are introduced. Second, an estimator of the conditional extreme-value index is derived. The asymptotic properties of the estimators are established under mild assumptions and their finite sample properties are illustrated both on simulated and real data.


1950 ◽  
Vol 2 ◽  
pp. 375-384 ◽  
Author(s):  
Mark Kac ◽  
Harry Pollard

1. The problem. It has been shown [1] that if Xi, + X2, … are independent random variables each of density then(1.1)


1994 ◽  
Vol 17 (2) ◽  
pp. 323-340 ◽  
Author(s):  
Deli Li ◽  
M. Bhaskara Rao ◽  
Xiangchen Wang

Combining Feller's criterion with a non-uniform estimate result in the context of the Central Limit Theorem for partial sums of independent random variables, we obtain several results on the Law of the Iterated Logarithm. Two of these results refine corresponding results of Wittmann (1985) and Egorov (1971). In addition, these results are compared with the corresponding results of Teicher (1974), Tomkins (1983) and Tomkins (1990)


2013 ◽  
Vol 45 (01) ◽  
pp. 106-138 ◽  
Author(s):  
Predrag R. Jelenković ◽  
Jian Tan

Consider a generic data unit of random size L that needs to be transmitted over a channel of unit capacity. The channel availability dynamic is modeled as an independent and identically distributed sequence {A, A i } i≥1 that is independent of L. During each period of time that the channel becomes available, say A i , we attempt to transmit the data unit. If L <A i , the transmission is considered successful; otherwise, we wait for the next available period A i+1 and attempt to retransmit the data from the beginning. We investigate the asymptotic properties of the number of retransmissions N and the total transmission time T until the data is successfully transmitted. In the context of studying the completion times in systems with failures where jobs restart from the beginning, it was first recognized by Fiorini, Sheahan and Lipsky (2005) and Sheahan, Lipsky, Fiorini and Asmussen (2006) that this model results in power-law and, in general, heavy-tailed delays. The main objective of this paper is to uncover the detailed structure of this class of heavy-tailed distributions induced by retransmissions. More precisely, we study how the functional relationship ℙ[L>x]-1 ≈ Φ (ℙ[A>x]-1) impacts the distributions of N and T; the approximation ‘≈’ will be appropriately defined in the paper based on the context. Depending on the growth rate of Φ(·), we discover several criticality points that separate classes of different functional behaviors of the distribution of N. For example, we show that if log(Φ(n)) is slowly varying then log(1/ℙ[N>n]) is essentially slowly varying as well. Interestingly, if log(Φ(n)) grows slower than e√(logn) then we have the asymptotic equivalence log(ℙ[N>n]) ≈ - log(Φ(n)). However, if log(Φ(n)) grows faster than e√(logn), this asymptotic equivalence does not hold and admits a different functional form. Similarly, different types of distributional behavior are shown for moderately heavy tails (Weibull distributions) where log(ℙ[N>n]) ≈ -(log Φ(n))1/(β+1), assuming that log Φ(n) ≈ nβ, as well as the nearly exponential ones of the form log(ℙ[N>n]) ≈ -n/(log n)1/γ, γ>0, when Φ(·) grows faster than two exponential scales log log (Φ(n)) ≈ n γ.


2012 ◽  
Vol 195-196 ◽  
pp. 694-700
Author(s):  
Hai Wu Huang ◽  
Qun Ying Wu ◽  
Guang Ming Deng

The main purpose of this paper is to investigate some properties of partial sums for negatively dependent random variables. By using some special numerical functions, and we get some probability inequalities and exponential inequalities of partial sums, which generalize the corresponding results for independent random variables and associated random variables. At last, exponential inequalities and Bernsteins inequality for negatively dependent random variables are presented.


Sign in / Sign up

Export Citation Format

Share Document