scholarly journals Erlangian Approximations for Finite-Horizon Ruin Probabilities

2002 ◽  
Vol 32 (2) ◽  
pp. 267-281 ◽  
Author(s):  
Soren Asmussen ◽  
Florin Avram ◽  
Miguel Usabel

AbstractFor the Cramér-Lundberg risk model with phase-type claims, it is shown that the probability of ruin before an independent phase-type time H coincides with the ruin probability in a certain Markovian fluid model and therefore has an matrix-exponential form. When H is exponential, this yields in particular a probabilistic interpretation of a recent result of Avram & Usabel. When H is Erlang, the matrix algebra takes a simple recursive form, and fixing the mean of H at T and letting the number of stages go to infinity yields a quick approximation procedure for the probability of ruin before time T. Numerical examples are given, including a combination with extrapolation.

2012 ◽  
Vol 49 (04) ◽  
pp. 954-966
Author(s):  
R. Romera ◽  
W. Runggaldier

A finite-horizon insurance model is studied where the risk/reserve process can be controlled by reinsurance and investment in the financial market. Our setting is innovative in the sense that we describe in a unified way the timing of the events, that is, the arrivals of claims and the changes of the prices in the financial market, by means of a continuous-time semi-Markov process which appears to be more realistic than, say, classical diffusion-based models. Obtaining explicit optimal solutions for the minimizing ruin probability is a difficult task. Therefore we derive a specific methodology, based on recursive relations for the ruin probability, to obtain a reinsurance and investment policy that minimizes an exponential bound (Lundberg-type bound) on the ruin probability.


Risks ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 53
Author(s):  
Franck Adékambi ◽  
Kokou Essiomle

This paper examines the impact of the parameters of the distribution of the time at which a bank’s client defaults on their obligated payments, on the Lundberg adjustment coefficient, the upper and lower bounds of the ruin probability. We study the corresponding ruin probability on the assumption of (i) a phase-type distribution for the time at which default occurs and (ii) an embedding of the stochastic cash flow or the reserves of the bank to the Sparre Andersen model. The exact analytical expression for the ruin probability is not tractable under these assumptions, so Cramér Lundberg bounds types are obtained for the ruin probabilities with concomitant explicit equations for the calculation of the adjustment coefficient. To add some numerical flavour to our results, we provide some numerical illustrations.


2012 ◽  
Vol 49 (4) ◽  
pp. 954-966 ◽  
Author(s):  
R. Romera ◽  
W. Runggaldier

A finite-horizon insurance model is studied where the risk/reserve process can be controlled by reinsurance and investment in the financial market. Our setting is innovative in the sense that we describe in a unified way the timing of the events, that is, the arrivals of claims and the changes of the prices in the financial market, by means of a continuous-time semi-Markov process which appears to be more realistic than, say, classical diffusion-based models. Obtaining explicit optimal solutions for the minimizing ruin probability is a difficult task. Therefore we derive a specific methodology, based on recursive relations for the ruin probability, to obtain a reinsurance and investment policy that minimizes an exponential bound (Lundberg-type bound) on the ruin probability.


2005 ◽  
Vol 35 (1) ◽  
pp. 61-77 ◽  
Author(s):  
Shuanming Li ◽  
José Garrido

We consider a risk model with two independent classes of insurance risks. We assume that the two independent claim counting processes are, respectively, Poisson and Sparre Andersen processes with generalized Erlang(2) claim inter-arrival times. The Laplace transform of the non-ruin probability is derived from a system of integro-differential equations. Explicit results can be obtained when the initial reserve is zero and the claim severity distributions of both classes belong to the Kn family of distributions. A relation between the ruin probability and the distribution of the supremum before ruin is identified. Finally, the Laplace transform of the non-ruin probability of a perturbed Sparre Andersen risk model with generalized Erlang(2) claim inter-arrival times is derived when the compound Poisson process converges weakly to a Wiener process.


2020 ◽  
Vol 13 (9) ◽  
pp. 211 ◽  
Author(s):  
Dila Puspita ◽  
Adam Kolkiewicz ◽  
Ken Seng Tan

The main objectives of this paper are to construct a new risk model for modelling the Hybrid-Takaful (Islamic Insurance) and to develop a computational procedure for calculating the associated ruin probability. Ruin probability is an important study in actuarial science to measure the level of solvency adequacy of an insurance product. The Hybrid-Takaful business model applies a Wakalah (agent based) contract for underwriting activities and Mudharabah (profit sharing) contract for investment activities. We consider the existence of qard-hasan facility provided by the operator (shareholder) as a benevolent loan for the participants’ fund in case of a deficit. This facility is a no-interest loan that will be repaid if the business generates profit in the future. For better investment management, we propose a separate investment account of the participants’ fund. We implement several numerical examples to analyze the impact of some key variables on the Takaful business model. We also find that our proposed Takaful model has a better performance than the conventional counterpart in terms of the probability of ruin.


2004 ◽  
Vol 34 (2) ◽  
pp. 315-332 ◽  
Author(s):  
F. Avram ◽  
M. Usábel

This paper shows how the multivariate finite time ruin probability function, in a phase-type environment, inherits the phase-type structure and can be efficiently approximated with only one Laplace transform inversion.From a theoretical point of view, we also provide below a generalization of Thorin’s formula (1971) for the double Laplace transform of the finite time ruin probability, by considering also the deficit at ruin; the model is that of a Sparre Andersen (renewal) risk process with phase-type interarrival times.In the case when the claims distribution is of phase-type as well, we obtain also an alternative formula for the single Laplace transform in time (or “exponentially killed probability’’), in terms of the roots with positive real part of the Lundberg’s equations, which complements Asmussen’s representation (1992) in terms of the roots with negative real part.


Author(s):  
K.K Jose ◽  
Shalitha Jacob

In this paper we consider type II bivariate generalized power series Poisson distribution as a compound Poisson distribution with bivariate generalized power series compounding distribution. We obtain some properties, p.m.f. and conditional distributions. In addition we also give a brief discussion about the multivariate extension of this case. Then we introduce type II bivariate generalized power series Poisson process and consider a bivariate risk model with type II bivariate generalized power series Poisson model as the counting process. For this model we derive distribution of the time to ruin and bounds for the probability of ruin. We obtain partial integro-differential equation for the ruin probabilities and express its bivariate transform through two univariate boundary transforms,where one of the initial capitals is fixed at zero.


2015 ◽  
Vol 44 (4) ◽  
pp. 367-379 ◽  
Author(s):  
Andrius Grigutis ◽  
Agneška Korvel ◽  
Jonas Šiaulys

In this work,  we investigate a  multi-risk model describing insurance business with  two or more independent series of claim amounts. Each series of claim amounts consists of independent nonnegative random variables. Claims of each series occur periodically with some fixed   inter-arrival time. Claim amounts occur until they   can be compensated by a common premium rate and the initial insurer's surplus.  In this article, wederive a recursive formula for calculation of finite-time ruin probabilities. In the case of bi-risk model, we present a procedure to calculate the ultimate ruin probability. We add several numerical examples illustrating application  of the derived formulas.DOI: http://dx.doi.org/10.5755/j01.itc.44.4.8635


2014 ◽  
Vol 51 (1) ◽  
pp. 293-296 ◽  
Author(s):  
Hansjörg Albrecher ◽  
Onno J. Boxma ◽  
Jevgenijs Ivanovs

In this note we provide a simple alternative probabilistic derivation of an explicit formula of Kwan and Yang (2007) for the probability of ruin in a risk model with a certain dependence between general claim interoccurrence times and subsequent claim sizes of conditionally exponential type. The approach puts the type of formula in a general context, illustrating the potential for similar simple ruin probability expressions in more general risk models with dependence.


2019 ◽  
Vol 56 (4) ◽  
pp. 1244-1268 ◽  
Author(s):  
Pierre-Olivier Goffard ◽  
Andrey Sarantsev

AbstractWe find explicit estimates for the exponential rate of long-term convergence for the ruin probability in a level-dependent Lévy-driven risk model, as time goes to infinity. Siegmund duality allows us to reduce the problem to long-term convergence of a reflected jump-diffusion to its stationary distribution, which is handled via Lyapunov functions.


Sign in / Sign up

Export Citation Format

Share Document