scholarly journals Ruin Probabilities of a Discrete-time Multi-risk Model

2015 ◽  
Vol 44 (4) ◽  
pp. 367-379 ◽  
Author(s):  
Andrius Grigutis ◽  
Agneška Korvel ◽  
Jonas Šiaulys

In this work,  we investigate a  multi-risk model describing insurance business with  two or more independent series of claim amounts. Each series of claim amounts consists of independent nonnegative random variables. Claims of each series occur periodically with some fixed   inter-arrival time. Claim amounts occur until they   can be compensated by a common premium rate and the initial insurer's surplus.  In this article, wederive a recursive formula for calculation of finite-time ruin probabilities. In the case of bi-risk model, we present a procedure to calculate the ultimate ruin probability. We add several numerical examples illustrating application  of the derived formulas.DOI: http://dx.doi.org/10.5755/j01.itc.44.4.8635

2010 ◽  
Vol 51 ◽  
Author(s):  
Eugenija Bieliauskienė ◽  
Jonas Šiaulys

The article deals with the classical discrete-time risk model with non-identically distributed claims. The recursive formula of infinite time ruin probability is obtained, which enables to evaluate the probability to ruin with desired accuracy.


2005 ◽  
Vol 20 (1) ◽  
pp. 103-113 ◽  
Author(s):  
Qihe Tang

Consider a discrete-time insurance risk model with risky investments. Under the assumption that the loss distribution belongs to a certain subclass of the subexponential class, Tang and Tsitsiashvili (Stochastic Processes and Their Applications 108(2): 299–325 (2003)) established a precise estimate for the finite time ruin probability. This article extends the result both to the whole subexponential class and to a nonstandard case with associated discount factors.


2015 ◽  
Vol 9 (2) ◽  
pp. 322-342 ◽  
Author(s):  
Xueyuan Wu ◽  
Mi Chen ◽  
Junyi Guo ◽  
Can Jin

AbstractThis paper proposes a discrete-time risk model that has a certain type of correlation between premiums and claim amounts. It is motivated by the well-known bonus-malus system (also known as the no claims discount) in the car insurance industry. Such a system penalises policyholders at fault in accidents by surcharges, and rewards claim-free years by discounts. For simplicity, only up to three levels of premium are considered in this paper and recursive formulae are derived to calculate the ultimate ruin probabilities. Explicit expressions of ruin probabilities are obtained in a simplified case. The impact of the proposed correlation between premiums and claims on ruin probabilities is examined through numerical examples. In the end, the joint probability of ruin and deficit at ruin is also considered.


2014 ◽  
Vol 45 (2) ◽  
pp. 421-443 ◽  
Author(s):  
Anisoara Maria Raducan ◽  
Raluca Vernic ◽  
Gheorghita Zbaganu

AbstractIn this paper, we present recursive formulae for the ruin probability at or before a certain claim arrival instant for some particular continuous time risk model. The claim number process underlying this risk model is a renewal process with either Erlang or a mixture of exponentials inter-claim times (ICTs). The claim sizes (CSs) are independent and distributed in Erlang's family, i.e., they can have different parameters, which yields a non-homogeneous risk process. We present the corresponding recursive algorithm used to evaluate the above mentioned ruin probability and we illustrate it on several numerical examples in which we vary the model's parameters to assess the impact of the non-homogeneity on the resulting ruin probability.


Author(s):  
Junqing Huang ◽  
Zhenhua Bao

In this paper, a discrete-time risk model with dividend strategy and a general premium rate is considered. Under such a strategy, once the insurer’s surplus hits a constant dividend barrier , dividends are paid off to shareholders at  instantly. Using the roots of a generalization of Lundberg’s fundamental equation and the general theory on difference equations, two difference equations for the Gerber-Shiu discounted penalty function are derived and solved. The analytic results obtained are utilized to derive the probability of ultimate ruin when the claim sizes is a mixture of two geometric distributions. Numerical examples are also given to illustrate the applicability of the results obtained.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 982
Author(s):  
Yujuan Huang ◽  
Jing Li ◽  
Hengyu Liu ◽  
Wenguang Yu

This paper considers the estimation of ruin probability in an insurance risk model with stochastic premium income. We first show that the ruin probability can be approximated by the complex Fourier series (CFS) expansion method. Then, we construct a nonparametric estimator of the ruin probability and analyze its convergence. Numerical examples are also provided to show the efficiency of our method when the sample size is finite.


2012 ◽  
Vol 49 (04) ◽  
pp. 954-966
Author(s):  
R. Romera ◽  
W. Runggaldier

A finite-horizon insurance model is studied where the risk/reserve process can be controlled by reinsurance and investment in the financial market. Our setting is innovative in the sense that we describe in a unified way the timing of the events, that is, the arrivals of claims and the changes of the prices in the financial market, by means of a continuous-time semi-Markov process which appears to be more realistic than, say, classical diffusion-based models. Obtaining explicit optimal solutions for the minimizing ruin probability is a difficult task. Therefore we derive a specific methodology, based on recursive relations for the ruin probability, to obtain a reinsurance and investment policy that minimizes an exponential bound (Lundberg-type bound) on the ruin probability.


2002 ◽  
Vol 32 (2) ◽  
pp. 267-281 ◽  
Author(s):  
Soren Asmussen ◽  
Florin Avram ◽  
Miguel Usabel

AbstractFor the Cramér-Lundberg risk model with phase-type claims, it is shown that the probability of ruin before an independent phase-type time H coincides with the ruin probability in a certain Markovian fluid model and therefore has an matrix-exponential form. When H is exponential, this yields in particular a probabilistic interpretation of a recent result of Avram & Usabel. When H is Erlang, the matrix algebra takes a simple recursive form, and fixing the mean of H at T and letting the number of stages go to infinity yields a quick approximation procedure for the probability of ruin before time T. Numerical examples are given, including a combination with extrapolation.


Risks ◽  
2017 ◽  
Vol 5 (1) ◽  
pp. 14 ◽  
Author(s):  
Xing-Fang Huang ◽  
Ting Zhang ◽  
Yang Yang ◽  
Tao Jiang

Risks ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 30 ◽  
Author(s):  
Franck Adékambi ◽  
Essodina Takouda

This paper considers the risk model perturbed by a diffusion process with a time delay in the arrival of the first two claims and takes into account dependence between claim amounts and the claim inter-occurrence times. Assuming that the time arrival of the first claim follows a generalized mixed equilibrium distribution, we derive the integro-differential Equations of the Gerber–Shiu function and its defective renewal equations. For the situation where claim amounts follow exponential distribution, we provide an explicit expression of the Gerber–Shiu function. Numerical examples are provided to illustrate the ruin probability.


Sign in / Sign up

Export Citation Format

Share Document