scholarly journals A Damaged Generalised Poisson Model and its Application to Reported and Unreported Accident Counts

2006 ◽  
Vol 36 (02) ◽  
pp. 463-487
Author(s):  
David P.M. Scollnik

This paper investigates some models in which non-negative observations from a Poisson or generalised Poisson distribution are possibly damaged according to a binomial or quasi-binomial law. The latter case is appropriate when the observations are over-dispersed. Although the extent of the damage is not known, it is assumed that the event of whether or not damage occurred is discernible. The models are particularly suited for certain applications involving accident counts when evidence of certain accidents may be observed even though the accidents themselves may go unreported. Given the number of observed accidents and knowledge as to whether or not some additional accidents have gone unreported, these models may be used to make inferences concerning the actual number of unreported and total number of accidents in the current period, and the numbers of reported, unreported, and/or total accidents in a future period. The models are applied to a real data set giving reported and unreported patient accidents in a large hospital. Both maximum likelihood and Bayesian estimation methods are presented and discussed.

2006 ◽  
Vol 36 (2) ◽  
pp. 463-487
Author(s):  
David P.M. Scollnik

This paper investigates some models in which non-negative observations from a Poisson or generalised Poisson distribution are possibly damaged according to a binomial or quasi-binomial law. The latter case is appropriate when the observations are over-dispersed. Although the extent of the damage is not known, it is assumed that the event of whether or not damage occurred is discernible. The models are particularly suited for certain applications involving accident counts when evidence of certain accidents may be observed even though the accidents themselves may go unreported. Given the number of observed accidents and knowledge as to whether or not some additional accidents have gone unreported, these models may be used to make inferences concerning the actual number of unreported and total number of accidents in the current period, and the numbers of reported, unreported, and/or total accidents in a future period. The models are applied to a real data set giving reported and unreported patient accidents in a large hospital. Both maximum likelihood and Bayesian estimation methods are presented and discussed.


In this paper, we have defined a new two-parameter new Lindley half Cauchy (NLHC) distribution using Lindley-G family of distribution which accommodates increasing, decreasing and a variety of monotone failure rates. The statistical properties of the proposed distribution such as probability density function, cumulative distribution function, quantile, the measure of skewness and kurtosis are presented. We have briefly described the three well-known estimation methods namely maximum likelihood estimators (MLE), least-square (LSE) and Cramer-Von-Mises (CVM) methods. All the computations are performed in R software. By using the maximum likelihood method, we have constructed the asymptotic confidence interval for the model parameters. We verify empirically the potentiality of the new distribution in modeling a real data set.


2021 ◽  
Vol 2 ◽  
pp. 1
Author(s):  
Haitham M. Yousof ◽  
Mustafa C. Korkmaz ◽  
G.G. Hamedani ◽  
Mohamed Ibrahim

In this work, we derive a novel extension of Chen distribution. Some statistical properties of the new model are derived. Numerical analysis for mean, variance, skewness and kurtosis is presented. Some characterizations of the proposed distribution are presented. Different classical estimation methods under uncensored schemes such as the maximum likelihood, Anderson-Darling, weighted least squares and right-tail Anderson–Darling methods are considered. Simulation studies are performed in order to compare and assess the above-mentioned estimation methods. For comparing the applicability of the four classical methods, two application to real data set are analyzed.


Author(s):  
Brijesh P. Singh ◽  
Sandeep Singh ◽  
Utpal Dhar Das ◽  
Gunjan Singh

In this paper an attempt has been made to inspect the distribution of the number of adult migrants from household through size biased probability models based on certain assumptions. Size Biased Poisson distribution compounded with various forms of Gamma distribution i.e. Gamma (1,θ) , Gamma (2,θ) and mixture of Gamma (1,θ) and Gamma (2,θ)  has been examined for some real data set of adult migration. The parameters of the proposed model have been estimated by method of maximum likelihood.  test indicates that the distributions proposed here are quite satisfactory to explain the pattern of adult out migration.


1996 ◽  
Vol 26 (1) ◽  
pp. 123-129 ◽  
Author(s):  
Peter ter Berg

AbstractMaximum likelihood estimation is derived for the Lagrangian Poisson distribution for a simple and a loglinear model and illustrated with real data.


Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 592 ◽  
Author(s):  
Mahmoud Mansour ◽  
Mahdi Rasekhi ◽  
Mohamed Ibrahim ◽  
Khaoula Aidi ◽  
Haitham M. Yousof ◽  
...  

In this paper, we first study a new two parameter lifetime distribution. This distribution includes “monotone” and “non-monotone” hazard rate functions which are useful in lifetime data analysis and reliability. Some of its mathematical properties including explicit expressions for the ordinary and incomplete moments, generating function, Renyi entropy, δ-entropy, order statistics and probability weighted moments are derived. Non-Bayesian estimation methods such as the maximum likelihood, Cramer-Von-Mises, percentile estimation, and L-moments are used for estimating the model parameters. The importance and flexibility of the new distribution are illustrated by means of two applications to real data sets. Using the approach of the Bagdonavicius–Nikulin goodness-of-fit test for the right censored validation, we then propose and apply a modified chi-square goodness-of-fit test for the Burr X Weibull model. The modified goodness-of-fit statistics test is applied for the right censored real data set. Based on the censored maximum likelihood estimators on initial data, the modified goodness-of-fit test recovers the loss in information while the grouped data follows the chi-square distribution. The elements of the modified criteria tests are derived. A real data application is for validation under the uncensored scheme.


2019 ◽  
Vol 8 (5) ◽  
pp. 34
Author(s):  
Diouma Sira KA ◽  
George Otieno Orwa ◽  
Oscar Ngesa

This paper discusses the Exponentiated Nadarajah-Haghighi Poisson distribution focusing on statistical properties such as the Quantile, Moments, Moment Generating Functions, Order statistics and Entropy. To estimate the parameters of the model, the Maximum Likelihood Estimation method is used. To demonstrate the performance of the estimators, a simulation study is carried out. A real data set from Air conditioning system is used to highlight the potential application of the distribution.


Author(s):  
Parisa Torkaman

The generalized inverted exponential distribution is introduced as a lifetime model with good statistical properties. This paper, the estimation of the probability density function and the cumulative distribution function of with five different estimation methods: uniformly minimum variance unbiased(UMVU), maximum likelihood(ML), least squares(LS), weighted least squares (WLS) and percentile(PC) estimators are considered. The performance of these estimation procedures, based on the mean squared error (MSE) by numerical simulations are compared. Simulation studies express that the UMVU estimator performs better than others and when the sample size is large enough the ML and UMVU estimators are almost equivalent and efficient than LS, WLS and PC. Finally, the result using a real data set are analyzed.


2020 ◽  
Vol 70 (5) ◽  
pp. 1211-1230
Author(s):  
Abdus Saboor ◽  
Hassan S. Bakouch ◽  
Fernando A. Moala ◽  
Sheraz Hussain

AbstractIn this paper, a bivariate extension of exponentiated Fréchet distribution is introduced, namely a bivariate exponentiated Fréchet (BvEF) distribution whose marginals are univariate exponentiated Fréchet distribution. Several properties of the proposed distribution are discussed, such as the joint survival function, joint probability density function, marginal probability density function, conditional probability density function, moments, marginal and bivariate moment generating functions. Moreover, the proposed distribution is obtained by the Marshall-Olkin survival copula. Estimation of the parameters is investigated by the maximum likelihood with the observed information matrix. In addition to the maximum likelihood estimation method, we consider the Bayesian inference and least square estimation and compare these three methodologies for the BvEF. A simulation study is carried out to compare the performance of the estimators by the presented estimation methods. The proposed bivariate distribution with other related bivariate distributions are fitted to a real-life paired data set. It is shown that, the BvEF distribution has a superior performance among the compared distributions using several tests of goodness–of–fit.


2016 ◽  
Vol 5 (4) ◽  
pp. 1
Author(s):  
Bander Al-Zahrani

The paper gives a description of estimation for the reliability function of weighted Weibull distribution. The maximum likelihood estimators for the unknown parameters are obtained. Nonparametric methods such as empirical method, kernel density estimator and a modified shrinkage estimator are provided. The Markov chain Monte Carlo method is used to compute the Bayes estimators assuming gamma and Jeffrey priors. The performance of the maximum likelihood, nonparametric methods and Bayesian estimators is assessed through a real data set.


Sign in / Sign up

Export Citation Format

Share Document