Implementation of Digital Hearing Aid as a Smartphone Application

Author(s):  
Saketh Sharma ◽  
Nitya Tiwari ◽  
Prem C. Pandey
Author(s):  
Isiaka Ajewale Alimi

Digital hearing aids addresses the issues of noise and speech intelligibility that is associated with the analogue types. One of the main functions of the digital signal processor (DSP) of digital hearing aid systems is noise reduction which can be achieved by speech enhancement algorithms which in turn improve system performance and flexibility. However, studies have shown that the quality of experience (QoE) with some of the current hearing aids is not up to expectation in a noisy environment due to interfering sound, background noise and reverberation. It is also suggested that noise reduction features of the DSP can be further improved accordingly. Recently, we proposed an adaptive spectral subtraction algorithm to enhance the performance of communication systems and address the issue of associated musical noise generated by the conventional spectral subtraction algorithm. The effectiveness of the algorithm has been confirmed by different objective and subjective evaluations. In this study, an adaptive spectral subtraction algorithm is implemented using the noise-estimation algorithm for highly non-stationary noisy environments instead of the voice activity detection (VAD) employed in our previous work due to its effectiveness. Also, signal to residual spectrum ratio (SR) is implemented in order to control the amplification distortion for speech intelligibility improvement. The results show that the proposed scheme gives comparatively better performance and can be easily employed in digital hearing aid system for improving speech quality and intelligibility.


2015 ◽  
Vol 70 ◽  
pp. 829
Author(s):  
Rijo Sebastian ◽  
Babita R. Jose ◽  
Shahana T. K. ◽  
Jimson Mathew

Author(s):  
Amrith Sukumaran ◽  
Kunal Karanjkar ◽  
Sandeep Jhanwar ◽  
Nagendra Krishnapura ◽  
Shanthi Pavan

1990 ◽  
Vol 88 (S1) ◽  
pp. S179-S179
Author(s):  
Asbjørn Krokstad ◽  
Jarle Svean

2006 ◽  
Vol 119 (2) ◽  
pp. 692
Author(s):  
Stephen W. Armstrong

2009 ◽  
Vol 20 (06) ◽  
pp. 353-373 ◽  
Author(s):  
Lisa G. Potts ◽  
Margaret W. Skinner ◽  
Ruth A. Litovsky ◽  
Michael J. Strube ◽  
Francis Kuk

Background: The use of bilateral amplification is now common clinical practice for hearing aid users but not for cochlear implant recipients. In the past, most cochlear implant recipients were implanted in one ear and wore only a monaural cochlear implant processor. There has been recent interest in benefits arising from bilateral stimulation that may be present for cochlear implant recipients. One option for bilateral stimulation is the use of a cochlear implant in one ear and a hearing aid in the opposite nonimplanted ear (bimodal hearing). Purpose: This study evaluated the effect of wearing a cochlear implant in one ear and a digital hearing aid in the opposite ear on speech recognition and localization. Research Design: A repeated-measures correlational study was completed. Study Sample: Nineteen adult Cochlear Nucleus 24 implant recipients participated in the study. Intervention: The participants were fit with a Widex Senso Vita 38 hearing aid to achieve maximum audibility and comfort within their dynamic range. Data Collection and Analysis: Soundfield thresholds, loudness growth, speech recognition, localization, and subjective questionnaires were obtained six–eight weeks after the hearing aid fitting. Testing was completed in three conditions: hearing aid only, cochlear implant only, and cochlear implant and hearing aid (bimodal). All tests were repeated four weeks after the first test session. Repeated-measures analysis of variance was used to analyze the data. Significant effects were further examined using pairwise comparison of means or in the case of continuous moderators, regression analyses. The speech-recognition and localization tasks were unique, in that a speech stimulus presented from a variety of roaming azimuths (140 degree loudspeaker array) was used. Results: Performance in the bimodal condition was significantly better for speech recognition and localization compared to the cochlear implant–only and hearing aid–only conditions. Performance was also different between these conditions when the location (i.e., side of the loudspeaker array that presented the word) was analyzed. In the bimodal condition, the speech-recognition and localization tasks were equal regardless of which side of the loudspeaker array presented the word, while performance was significantly poorer for the monaural conditions (hearing aid only and cochlear implant only) when the words were presented on the side with no stimulation. Binaural loudness summation of 1–3 dB was seen in soundfield thresholds and loudness growth in the bimodal condition. Measures of the audibility of sound with the hearing aid, including unaided thresholds, soundfield thresholds, and the Speech Intelligibility Index, were significant moderators of speech recognition and localization. Based on the questionnaire responses, participants showed a strong preference for bimodal stimulation. Conclusions: These findings suggest that a well-fit digital hearing aid worn in conjunction with a cochlear implant is beneficial to speech recognition and localization. The dynamic test procedures used in this study illustrate the importance of bilateral hearing for locating, identifying, and switching attention between multiple speakers. It is recommended that unilateral cochlear implant recipients, with measurable unaided hearing thresholds, be fit with a hearing aid.


2009 ◽  
Vol 13 (3) ◽  
pp. 181-189 ◽  
Author(s):  
Steven L. Bell

When hearing aid gain is prescribed by software, gain is calculated based on the average acoustics for the age of patient, gender, mold type, and so on. The acoustics of the individual's ear often vary from the average values, so there will be a mismatch between the prescribed gain and the real-ear gain. Real-ear measurement can be used to verify the gain and adjust it to meet targets, but the quality of the match will be limited by the number of channels and the flexibility of the hearing aid. A potential way to improve this process is to generate a filter that compensates for variations in real-ear insertion gain due to individual ear acoustics. Such a filter could be included in the processing path of a digital hearing aid. This article describes how such a filter can be generated using the windowing method, and the principle is demonstrated in a real ear. The approach requires communication between the real-ear measurement and hearing aid programming software. A finite impulse response filter with group delay just over 2 ms matched insertion gain to target values within the acceptable tolerance defined by British Society of Audiology guidelines.


Sign in / Sign up

Export Citation Format

Share Document