scholarly journals Recognition and Localization of Speech by Adult Cochlear Implant Recipients Wearing a Digital Hearing Aid in the Nonimplanted Ear (Bimodal Hearing)

2009 ◽  
Vol 20 (06) ◽  
pp. 353-373 ◽  
Author(s):  
Lisa G. Potts ◽  
Margaret W. Skinner ◽  
Ruth A. Litovsky ◽  
Michael J. Strube ◽  
Francis Kuk

Background: The use of bilateral amplification is now common clinical practice for hearing aid users but not for cochlear implant recipients. In the past, most cochlear implant recipients were implanted in one ear and wore only a monaural cochlear implant processor. There has been recent interest in benefits arising from bilateral stimulation that may be present for cochlear implant recipients. One option for bilateral stimulation is the use of a cochlear implant in one ear and a hearing aid in the opposite nonimplanted ear (bimodal hearing). Purpose: This study evaluated the effect of wearing a cochlear implant in one ear and a digital hearing aid in the opposite ear on speech recognition and localization. Research Design: A repeated-measures correlational study was completed. Study Sample: Nineteen adult Cochlear Nucleus 24 implant recipients participated in the study. Intervention: The participants were fit with a Widex Senso Vita 38 hearing aid to achieve maximum audibility and comfort within their dynamic range. Data Collection and Analysis: Soundfield thresholds, loudness growth, speech recognition, localization, and subjective questionnaires were obtained six–eight weeks after the hearing aid fitting. Testing was completed in three conditions: hearing aid only, cochlear implant only, and cochlear implant and hearing aid (bimodal). All tests were repeated four weeks after the first test session. Repeated-measures analysis of variance was used to analyze the data. Significant effects were further examined using pairwise comparison of means or in the case of continuous moderators, regression analyses. The speech-recognition and localization tasks were unique, in that a speech stimulus presented from a variety of roaming azimuths (140 degree loudspeaker array) was used. Results: Performance in the bimodal condition was significantly better for speech recognition and localization compared to the cochlear implant–only and hearing aid–only conditions. Performance was also different between these conditions when the location (i.e., side of the loudspeaker array that presented the word) was analyzed. In the bimodal condition, the speech-recognition and localization tasks were equal regardless of which side of the loudspeaker array presented the word, while performance was significantly poorer for the monaural conditions (hearing aid only and cochlear implant only) when the words were presented on the side with no stimulation. Binaural loudness summation of 1–3 dB was seen in soundfield thresholds and loudness growth in the bimodal condition. Measures of the audibility of sound with the hearing aid, including unaided thresholds, soundfield thresholds, and the Speech Intelligibility Index, were significant moderators of speech recognition and localization. Based on the questionnaire responses, participants showed a strong preference for bimodal stimulation. Conclusions: These findings suggest that a well-fit digital hearing aid worn in conjunction with a cochlear implant is beneficial to speech recognition and localization. The dynamic test procedures used in this study illustrate the importance of bilateral hearing for locating, identifying, and switching attention between multiple speakers. It is recommended that unilateral cochlear implant recipients, with measurable unaided hearing thresholds, be fit with a hearing aid.

2014 ◽  
Vol 23 (1) ◽  
pp. 79-92 ◽  
Author(s):  
Lisa G. Potts ◽  
Ruth Y. Litovsky

Purpose The use of bilateral stimulation is becoming common for cochlear implant (CI) recipients with either (a) a CI in one ear and a hearing aid (HA) in the nonimplanted ear (CI&HA—bimodal) or (b) CIs in both ears (CI&CI—bilateral). The objective of this study was to evaluate 4 individuals who transitioned from bimodal to bilateral stimulation. Method Participants had completed a larger study of bimodal hearing and subsequently received a second CI. Test procedures from the bimodal study, including roaming speech recognition, localization, and a questionnaire (the Speech, Spatial, and Qualities of Hearing Scale; Gatehouse & Noble, 2004) were repeated after 6–7 months of bilateral CI experience. Results Speech recognition and localization were not significantly different between bimodal and unilateral CI. In contrast, performance was significantly better with CI&CI compared with unilateral CI. Speech recognition with CI&CI was significantly better than with CI&HA for 2 of 4 participants. Localization was significantly better for all participants with CI&CI compared with CI&HA. CI&CI performance was rated as significantly better on the Speech, Spatial, and Qualities of Hearing Scale compared with CI&HA. Conclusions There was a strong preference for CI&CI for all participants. The variability in speech recognition and localization, however, suggests that performance under these stimulus conditions is individualized. Differences in hearing and/or HA history may explain performance differences.


2012 ◽  
Vol 23 (05) ◽  
pp. 302-312 ◽  
Author(s):  
Jacquelyn Baudhuin ◽  
Jamie Cadieux ◽  
Jill B. Firszt ◽  
Ruth M. Reeder ◽  
Jerrica L. Maxson

Background: Cochlear implants provide access to soft intensity sounds and therefore improved audibility for children with severe-to-profound hearing loss. Speech processor programming parameters, such as threshold (or T-level), input dynamic range (IDR), and microphone sensitivity, contribute to the recipient's program and influence audibility. When soundfield thresholds obtained through the speech processor are elevated, programming parameters can be modified to improve soft sound detection. Adult recipients show improved detection for low-level sounds when T-levels are set at raised levels and show better speech understanding in quiet when wider IDRs are used. Little is known about the effects of parameter settings on detection and speech recognition in children using today's cochlear implant technology. Purpose: The overall study aim was to assess optimal T-level, IDR, and sensitivity settings in pediatric recipients of the Advanced Bionics cochlear implant. Research Design: Two experiments were conducted. Experiment 1 examined the effects of two T-level settings on soundfield thresholds and detection of the Ling 6 sounds. One program set T-levels at 10% of most comfortable levels (M-levels) and another at 10 current units (CUs) below the level judged as “soft.” Experiment 2 examined the effects of IDR and sensitivity settings on speech recognition in quiet and noise. Study Sample: Participants were 11 children 7–17 yr of age (mean 11.3) implanted with the Advanced Bionics High Resolution 90K or CII cochlear implant system who had speech recognition scores of 20% or greater on a monosyllabic word test. Data Collection and Analysis: Two T-level programs were compared for detection of the Ling sounds and frequency modulated (FM) tones. Differing IDR/sensitivity programs (50/0, 50/10, 70/0, 70/10) were compared using Ling and FM tone detection thresholds, CNC (consonant-vowel nucleus-consonant) words at 50 dB SPL, and Hearing in Noise Test for Children (HINT-C) sentences at 65 dB SPL in the presence of four-talker babble (+8 signal-to-noise ratio). Outcomes were analyzed using a paired t-test and a mixed-model repeated measures analysis of variance (ANOVA). Results: T-levels set 10 CUs below “soft” resulted in significantly lower detection thresholds for all six Ling sounds and FM tones at 250, 1000, 3000, 4000, and 6000 Hz. When comparing programs differing by IDR and sensitivity, a 50 dB IDR with a 0 sensitivity setting showed significantly poorer thresholds for low frequency FM tones and voiced Ling sounds. Analysis of group mean scores for CNC words in quiet or HINT-C sentences in noise indicated no significant differences across IDR/sensitivity settings. Individual data, however, showed significant differences between IDR/sensitivity programs in noise; the optimal program differed across participants. Conclusions: In pediatric recipients of the Advanced Bionics cochlear implant device, manually setting T-levels with ascending loudness judgments should be considered when possible or when low-level sounds are inaudible. Study findings confirm the need to determine program settings on an individual basis as well as the importance of speech recognition verification measures in both quiet and noise. Clinical guidelines are suggested for selection of programming parameters in both young and older children.


2020 ◽  
Vol 24 ◽  
pp. 233121652094897
Author(s):  
Dimitar Spirrov ◽  
Eugen Kludt ◽  
Eline Verschueren ◽  
Andreas Büchner ◽  
Tom Francart

Automatic gain control (AGC) compresses the wide dynamic range of sounds to the narrow dynamic range of hearing-impaired listeners. Setting AGC parameters (time constants and knee points) is an important part of the fitting of hearing devices. These parameters do not only influence overall loudness elicited by the hearing devices but can also affect the recognition of speech in noise. We investigated whether matching knee points and time constants of the AGC between the cochlear implant and the hearing aid of bimodal listeners would improve speech recognition in noise. We recruited 18 bimodal listeners and provided them all with the same cochlear-implant processor and hearing aid. We compared the matched AGCs with the default device settings with mismatched AGCs. As a baseline, we also included a condition with the mismatched AGCs of the participants’ own devices. We tested speech recognition in quiet and in noise presented from different directions. The time constants affected outcomes in the monaural testing condition with the cochlear implant alone. There were no specific binaural performance differences between the two AGC settings. Therefore, the performance was mostly dependent on the monaural cochlear implant alone condition.


2016 ◽  
Vol 59 (1) ◽  
pp. 99-109 ◽  
Author(s):  
Jennifer R. Fowler ◽  
Jessica L. Eggleston ◽  
Kelly M. Reavis ◽  
Garnett P. McMillan ◽  
Lina A. J. Reiss

PurposeThe objective was to determine whether speech perception could be improved for bimodal listeners (those using a cochlear implant [CI] in one ear and hearing aid in the contralateral ear) by removing low-frequency information provided by the CI, thereby reducing acoustic–electric overlap.MethodSubjects were adult CI subjects with at least 1 year of CI experience. Nine subjects were evaluated in the CI-only condition (control condition), and 26 subjects were evaluated in the bimodal condition. CIs were programmed with 4 experimental programs in which the low cutoff frequency (LCF) was progressively raised. Speech perception was evaluated using Consonant-Nucleus-Consonant words in quiet, AzBio sentences in background babble, and spondee words in background babble.ResultsThe CI-only group showed decreased speech perception in both quiet and noise as the LCF was raised. Bimodal subjects with better hearing in the hearing aid ear (< 60 dB HL at 250 and 500 Hz) performed best for words in quiet as the LCF was raised. In contrast, bimodal subjects with worse hearing (> 60 dB HL at 250 and 500 Hz) performed similarly to the CI-only group.ConclusionsThese findings suggest that reducing low-frequency overlap of the CI and contralateral hearing aid may improve performance in quiet for some bimodal listeners with better hearing.


2019 ◽  
Vol 40 (3) ◽  
pp. 621-635 ◽  
Author(s):  
Arlene C. Neuman ◽  
Annette Zeman ◽  
Jonathan Neukam ◽  
Binhuan Wang ◽  
Mario A. Svirsky

2015 ◽  
Vol 24 (4) ◽  
pp. 462-468 ◽  
Author(s):  
Jessica J. Messersmith ◽  
Lindsey E. Jorgensen ◽  
Jessica A. Hagg

Purpose The purpose of this study was to determine whether an alternate fitting strategy, specifically adjustment to gains in a hearing aid (HA), would improve performance in patients who experienced poorer performance in the bimodal condition when the HA was fit to traditional targets. Method This study was a retrospective chart review from a local clinic population seen during a 6-month period. Participants included 6 users of bimodal stimulation. Two performed poorer in the cochlear implant (CI) + HA condition than in the CI-only condition. One individual performed higher in the bimodal condition, but the overall performance was low. Three age range–matched users whose performance increased when the HA was used in conjunction with a CI were also included. The HA gain was reduced beyond 2000 Hz. Speech perception scores were obtained pre- and postmodification to the HA fitting. Results All listeners whose HA was programmed using the modified approach demonstrated improved speech perception scores with the modified HA fit in the bimodal condition when compared with the traditional HA fit in the bimodal condition. Conclusion Modifications to gains above 2000 Hz in the HA may improve performance for bimodal listeners who perform more poorly in the bimodal condition when the HA is fit to traditional targets.


2018 ◽  
Vol 29 (04) ◽  
pp. 273-278
Author(s):  
Haihong Liu ◽  
Yuanhu Liu ◽  
Ying Li ◽  
Xin Jin ◽  
Jing Li ◽  
...  

AbstractWide dynamic range compression (WDRC) has been widely used in hearing aid technology. However, several reports indicate that WDRC may improve audibility at the expense of speech intelligibility. As such, a modified amplification compression scheme, named adaptive compression, was developed. However, the effect of compression strategies on speech perception in pediatric hearing aid users has not been clearly reported.The purpose of the present study was to investigate the effect of adaptive compression and fast-acting WDRC processing strategies on sentence recognition in noise with Mandarin, pediatric hearing aid users.This study was set up using a double-blind, within-subject, repeated-measures design.Twenty-six children who spoke Mandarin Chinese as their primary language and had bilateral sensorineural hearing loss participated in the study.Sentence recognition in noise was evaluated in behind-the-ear technology with both adaptive compression processing and fast-acting WDRC processing and was selected randomly for each child. Percent correct sentence recognition in noise with fast-acting WDRC and adaptive compression was collected from each participant. Correlation analysis was performed to examine the effect of gender, age at assessment, and hearing threshold of the better ear on signal-to-noise ratio, and a paired-samples t test was employed to compare the performance of the adaptive compression strategy and fast-acting WDRC processing.The mean percentage correct of sentence recognition in noise with behind-the-ear technology with fast-acting WDRC and adaptive compression processing were 62.24% and 68.71%, respectively. The paired-samples t test showed that the performance of the adaptive compression strategy was significantly better than the fast-acting WDRC processing (t = 3.190, p = 0.004).Compared with the fast-acting WDRC, adaptive compression provided better sentence recognition in noise for Mandarin pediatric hearing aid users.


Author(s):  
Poonam Raj ◽  
Ruchika Mittal

<p class="abstract"><strong>Background:</strong> With the steady increase in unilateral cochlear implant surgery as management of bilateral sensorineural hearing loss, the benefits of bimodal hearing have been well documented. However very few studies are available on the timing of bimodal hearing stimulation after cochlear implantation. The present study deals with when to provide bimodal hearing in unilaterally implanted children to achieve maximum benefit<span lang="EN-IN">. </span></p><p class="abstract"><strong>Methods:</strong> This study was carried out in 120 children aged between 3-5 years who underwent unilateral cochlear implant surgery. The implant was switched-on two weeks after surgery in all cases. The children were randomized into two groups of 60 each. Group 1 comprised of children who continued to use hearing aid in the non-implanted ear immediately after the cochlear implant surgery. Group 2 children discontinued using hearing aid in the non-implanted ear after surgery and restarted its usage after four weeks of switch on of the cochlear implant. The progress in both groups was monitored using category of auditory performance (CAP) scores and through a questionnaire<span lang="EN-IN">.  </span></p><p class="abstract"><strong>Results:</strong> The mean age of the children was 3.55 years. 11.6 % of the recipients could localize sounds and 5% could understand speech in noisy environment in Group 2 whereas in 1.7% of the recipients could localize sounds and none of the recipient could understand speech in noisy environment in Group 1 after 3 months of follow up.  CAP scores increased steadily in Group 2 over the study period whereas Group 1 recipients did not show the same progress<span lang="EN-IN">. </span></p><p class="abstract"><strong>Conclusions:</strong> We recommend that bimodal fitting should be the standard practice for clinical management of children who receive unilateral cochlear implant. The best practice is to restart the use of the hearing aid in the non-implanted ear, after one month of activation of the implant to achieve maximum benefit<span lang="EN-IN">.</span></p>


Author(s):  
Snandan Sharma ◽  
Waldo Nogueira ◽  
A. John van Opstal ◽  
Josef Chalupper ◽  
Lucas H. M. Mens ◽  
...  

Purpose Speech understanding in noise and horizontal sound localization is poor in most cochlear implant (CI) users with a hearing aid (bimodal stimulation). This study investigated the effect of static and less-extreme adaptive frequency compression in hearing aids on spatial hearing. By means of frequency compression, we aimed to restore high-frequency audibility, and thus improve sound localization and spatial speech recognition. Method Sound-detection thresholds, sound localization, and spatial speech recognition were measured in eight bimodal CI users, with and without frequency compression. We tested two compression algorithms: a static algorithm, which compressed frequencies beyond the compression knee point (160 or 480 Hz), and an adaptive algorithm, which aimed to compress only consonants leaving vowels unaffected (adaptive knee-point frequencies from 736 to 2946 Hz). Results Compression yielded a strong audibility benefit (high-frequency thresholds improved by 40 and 24 dB for static and adaptive compression, respectively), no meaningful improvement in localization performance (errors remained > 30 deg), and spatial speech recognition across all participants. Localization biases without compression (toward the hearing-aid and implant side for low- and high-frequency sounds, respectively) disappeared or reversed with compression. The audibility benefits provided to each bimodal user partially explained any individual improvements in localization performance; shifts in bias; and, for six out of eight participants, benefits in spatial speech recognition. Conclusions We speculate that limiting factors such as a persistent hearing asymmetry and mismatch in spectral overlap prevent compression in bimodal users from improving sound localization. Therefore, the benefit in spatial release from masking by compression is likely due to a shift of attention to the ear with the better signal-to-noise ratio facilitated by compression, rather than an improved spatial selectivity. Supplemental Material https://doi.org/10.23641/asha.16869485


Sign in / Sign up

Export Citation Format

Share Document