scholarly journals Entanglement, non-hermiticity, and duality

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Mei Chen ◽  
Shuai A. Chen ◽  
Peng Ye

Usually duality process keeps energy spectrum invariant. In this paper, we provide a duality, which keeps entanglement spectrum invariant, in order to diagnose quantum entanglement of non-Hermitian non-interacting fermionic systems. We limit our attention to non-Hermitian systems with a complete set of biorthonormal eigenvectors and an entirely real energy spectrum. The original system has a reduced density matrix \rho_\mathrm{o}ρo and the real space is partitioned via a projecting operator \mathcal{R}_{\mathrm o}ℛo. After dualization, we obtain a new reduced density matrix \rho_{\mathrm{d}}ρd and a new real space projector \mathcal{R}_{\mathrm d}ℛd. Remarkably, entanglement spectrum and entanglement entropy keep invariant. Inspired by the duality, we defined two types of non-Hermitian models, upon \mathcal R_{\mathrm{o}}ℛo is given. In type-I exemplified by the "non-reciprocal model'', there exists at least one duality such that \rho_{\mathrm{d}}ρd is Hermitian. In other words, entanglement information of type-I non-Hermitian models with a given \mathcal{R}_{\mathrm{o}}ℛo is entirely controlled by Hermitian models with \mathcal{R}_{\mathrm{d}}ℛd. As a result, we are allowed to apply known results of Hermitian systems to efficiently obtain entanglement properties of type-I models. On the other hand, the duals of type-II models, exemplified by "non-Hermitian Su-Schrieffer-Heeger model’’, are always non-Hermitian. For the practical purpose, the duality provides a potentially computation route to entanglement of non-Hermitian systems. Via connecting different models, the duality also sheds lights on either trivial or nontrivial role of non-Hermiticity played in quantum entanglement, paving the way to potentially systematic classification and characterization of non-Hermitian systems from the entanglement perspective.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Wu-zhong Guo

Abstract The reduced density matrix of a given subsystem, denoted by ρA, contains the information on subregion duality in a holographic theory. We may extract the information by using the spectrum (eigenvalue) of the matrix, called entanglement spectrum in this paper. We evaluate the density of eigenstates, one-point and two-point correlation functions in the microcanonical ensemble state ρA,m associated with an eigenvalue λ for some examples, including a single interval and two intervals in vacuum state of 2D CFTs. We find there exists a microcanonical ensemble state with λ0 which can be seen as an approximate state of ρA. The parameter λ0 is obtained in the two examples. For a general geometric state, the approximate microcanonical ensemble state also exists. The parameter λ0 is associated with the entanglement entropy of A and Rényi entropy in the limit n → ∞. As an application of the above conclusion we reform the equality case of the Araki-Lieb inequality of the entanglement entropies of two intervals in vacuum state of 2D CFTs as conditions of Holevo information. We show the constraints on the eigenstates. Finally, we point out some unsolved problems and their significance on understanding the geometric states.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Aditya Dwivedi ◽  
Siddharth Dwivedi ◽  
Bhabani Prasad Mandal ◽  
Pichai Ramadevi ◽  
Vivek Kumar Singh

AbstractThe entanglement entropy of many quantum systems is difficult to compute in general. They are obtained as a limiting case of the Rényi entropy of index m, which captures the higher moments of the reduced density matrix. In this work, we study pure bipartite states associated with S3 complements of a two-component link which is a connected sum of a knot $$ \mathcal{K} $$ K and the Hopf link. For this class of links, the Chern-Simons theory provides the necessary setting to visualise the m-moment of the reduced density matrix as a three-manifold invariant Z($$ {M}_{{\mathcal{K}}_m} $$ M K m ), which is the partition function of $$ {M}_{{\mathcal{K}}_m} $$ M K m . Here $$ {M}_{{\mathcal{K}}_m} $$ M K m is a closed 3-manifold associated with the knot $$ \mathcal{K} $$ K m, where $$ \mathcal{K} $$ K m is a connected sum of m-copies of $$ \mathcal{K} $$ K (i.e., $$ \mathcal{K} $$ K #$$ \mathcal{K} $$ K . . . #$$ \mathcal{K} $$ K ) which mimics the well-known replica method. We analayse the partition functions Z($$ {M}_{{\mathcal{K}}_m} $$ M K m ) for SU(2) and SO(3) gauge groups, in the limit of the large Chern-Simons coupling k. For SU(2) group, we show that Z($$ {M}_{{\mathcal{K}}_m} $$ M K m ) can grow at most polynomially in k. On the contrary, we conjecture that Z($$ {M}_{{\mathcal{K}}_m} $$ M K m ) for SO(3) group shows an exponential growth in k, where the leading term of ln Z($$ {M}_{{\mathcal{K}}_m} $$ M K m ) is the hyperbolic volume of the knot complement S3\$$ \mathcal{K} $$ K m. We further propose that the Rényi entropies associated with SO(3) group converge to a finite value in the large k limit. We present some examples to validate our conjecture and proposal.


2012 ◽  
Vol 26 (27n28) ◽  
pp. 1243009 ◽  
Author(s):  
VLADISLAV POPKOV ◽  
MARIO SALERNO

In this paper we discuss the properties of the reduced density matrix of quantum many body systems with permutational symmetry and present basic quantification of the entanglement in terms of the von Neumann (VNE), Renyi and Tsallis entropies. In particular, we show, on the specific example of the spin 1/2 Heisenberg model, how the RDM acquires a block diagonal form with respect to the quantum number k fixing the polarization in the subsystem conservation of Sz and with respect to the irreducible representations of the Sn group. Analytical expression for the RDM elements and for the RDM spectrum are derived for states of arbitrary permutational symmetry and for arbitrary polarizations. The temperature dependence and scaling of the VNE across a finite temperature phase transition is discussed and the RDM moments and the Rényi and Tsallis entropies calculated both for symmetric ground states of the Heisenberg chain and for maximally mixed states.


Author(s):  
Sambarta Chatterjee ◽  
Nancy Makri

We investigate the time evolution of the reduced density matrix (RDM) and its purity in the dynamics of a two-level system coupled to a dissipative harmonic bath, when the system is initially placed in one of its eigenstates.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
J. G. Li ◽  
N. Michel ◽  
W. Zuo ◽  
F. R. Xu

Sign in / Sign up

Export Citation Format

Share Document