scholarly journals A Toy Model of the Information Paradox in Empty Space

2019 ◽  
Vol 6 (6) ◽  
Author(s):  
Suvrat Raju

A sharp version of the information paradox involves a seeming violation of the monogamy of entanglement during black hole evaporation. We construct an analogous paradox in empty anti-de Sitter space. In a local quantum field theory, Bell correlations between operators localized in mutually spacelike regions are monogamous. We show, through a controlled calculation, that this property can be violated by an order-1 factor in a theory of gravity. This example demonstrates that what appears to be a violation of the monogamy of entanglement may just be a subtle violation of locality in quantum gravity.

2016 ◽  
Vol 31 (11) ◽  
pp. 1650052 ◽  
Author(s):  
Hamed Pejhan ◽  
Surena Rahbardehghan

Respecting that any consistent quantum field theory in curved space–time must include black hole radiation, in this paper, we examine the Krein–Gupta–Bleuler (KGB) formalism as an inevitable quantization scheme in order to follow the guideline of the covariance of minimally coupled massless scalar field and linear gravity on de Sitter (dS) background in the sense of Wightman–Gärding approach, by investigating thermodynamical aspects of black holes. The formalism is interestingly free of pathological large distance behavior. In this construction, also, no infinite term appears in the calculation of expectation values of the energy–momentum tensor (we have an automatic and covariant renormalization) which results in the vacuum energy of the free field to vanish. However, the existence of an effective potential barrier, intrinsically created by black holes gravitational field, gives a Casimir-type contribution to the vacuum expectation value of the energy–momentum tensor. On this basis, by evaluating the Casimir energy–momentum tensor for a conformally coupled massless scalar field in the vicinity of a nonrotating black hole event horizon through the KGB quantization, in this work, we explicitly prove that the hole produces black-body radiation which its temperature exactly coincides with the result obtained by Hawking for black hole radiation.


Author(s):  
Katherine Blundell

‘Entropy and thermodynamics of black holes’ considers how the laws of thermodynamics and entropy can be applied to black holes. It discusses the work of Roger Penrose, James Bardeen, Brandon Carter, and Stephen Hawking, which, using quantum mechanics and quantum field theory, has enabled these scientists to propose likely behaviour in and around black holes. The concepts of black hole evaporation and Hawking radiation are explained to show how black holes lose mass and eventually disappear. It concludes with the black hole information paradox: can the information stored in the matter that fell into the black hole ever be recovered?


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Gustav Mogull ◽  
Jan Plefka ◽  
Jan Steinhoff

Abstract A precise link is derived between scalar-graviton S-matrix elements and expectation values of operators in a worldline quantum field theory (WQFT), both used to describe classical scattering of black holes. The link is formally provided by a worldline path integral representation of the graviton-dressed scalar propagator, which may be inserted into a traditional definition of the S-matrix in terms of time-ordered correlators. To calculate expectation values in the WQFT a new set of Feynman rules is introduced which treats the gravitational field hμν(x) and position $$ {x}_i^{\mu}\left({\tau}_i\right) $$ x i μ τ i of each black hole on equal footing. Using these both the 3PM three-body gravitational radiation 〈hμv(k)〉 and 2PM two-body deflection $$ \Delta {p}_i^{\mu } $$ Δ p i μ from classical black hole scattering events are obtained. The latter can also be obtained from the eikonal phase of a 2 → 2 scalar S-matrix, which we show corresponds to the free energy of the WQFT.


1978 ◽  
Vol 18 (10) ◽  
pp. 3565-3576 ◽  
Author(s):  
S. J. Avis ◽  
C. J. Isham ◽  
D. Storey

Sign in / Sign up

Export Citation Format

Share Document