scholarly journals Information geometry in quantum field theory: lessons from simple examples

2020 ◽  
Vol 8 (5) ◽  
Author(s):  
Johanna Erdmenger ◽  
Kevin Grosvenor ◽  
Ro Jefferson

Motivated by the increasing connections between information theory and high-energy physics, particularly in the context of the AdS/CFT correspondence, we explore the information geometry associated to a variety of simple systems. By studying their Fisher metrics, we derive some general lessons that may have important implications for the application of information geometry in holography. We begin by demonstrating that the symmetries of the physical theory under study play a strong role in the resulting geometry, and that the appearance of an AdS metric is a relatively general feature. We then investigate what information the Fisher metric retains about the physics of the underlying theory by studying the geometry for both the classical 2d Ising model and the corresponding 1d free fermion theory, and find that the curvature diverges precisely at the phase transition on both sides. We discuss the differences that result from placing a metric on the space of theories vs.~states, using the example of coherent free fermion states. We compare the latter to the metric on the space of coherent free boson states and show that in both cases the metric is determined by the symmetries of the corresponding density matrix. We also clarify some misconceptions in the literature pertaining to different notions of flatness associated to metric and non-metric connections, with implications for how one interprets the curvature of the geometry. Our results indicate that in general, caution is needed when connecting the AdS geometry arising from certain models with the AdS/CFT correspondence, and seek to provide a useful collection of guidelines for future progress in this exciting area.

1994 ◽  
Vol 05 (06) ◽  
pp. 1089-1101 ◽  
Author(s):  
LEVAN R. SURGULADZE

A short review of the present status of computer packages for the high order analytical perturbative calculations is presented. The mathematical algorithm and the quantum field theory methods used are briefly discussed. The most recent computer package HEPLoops for analytical computations in high energy physics up to four-loops is also discussed.


Author(s):  
W. J. Torres Bobadilla ◽  
G. F. R. Sborlini ◽  
P. Banerjee ◽  
S. Catani ◽  
A. L. Cherchiglia ◽  
...  

AbstractIn this manuscript, we report the outcome of the topical workshop: paving the way to alternative NNLO strategies (https://indico.ific.uv.es/e/WorkStop-ThinkStart_3.0), by presenting a discussion about different frameworks to perform precise higher-order computations for high-energy physics. These approaches implement novel strategies to deal with infrared and ultraviolet singularities in quantum field theories. A special emphasis is devoted to the local cancellation of these singularities, which can enhance the efficiency of computations and lead to discover novel mathematical properties in quantum field theories.


2001 ◽  
Vol 16 (18) ◽  
pp. 3041-3065 ◽  
Author(s):  
GEORGE STERMAN

This talk introduces perturbative quantum field on a heuristic level. It is directed at an audience familiar with elements of quantum mechanics, but not necessarily with high energy physics. It includes a discussion of the strategies behind experimental tests of fundamental theories, and of the field theory interpretations of these tests.


2020 ◽  
Vol 22 (4) ◽  
pp. 86-98
Author(s):  
Tomasz Przedzinski ◽  
Maciej Malawski ◽  
Zbigniew Was ◽  
Jeffrey Carver ◽  
Damian Rouson

Author(s):  
Leo G. Sapogin ◽  
V. A. Dzhanibekov ◽  
Yu. A. Ryabov

This article describes a model of Unitary Quantum Field theory where the particle is represented as a wave packet. The frequency dispersion equation is chosen so that the packet periodically appears and disappears without form changings. The envelope of the process is identified with a conventional wave function. Equation of such a field is nonlinear and relativistically invariant. With proper adjustments, they are reduced to Dirac, Schrödinger and Hamilton-Jacobi equations. A number of new experimental effects have been predicted both for high and low energies. Fine structure constant (1/137) was determined in 1988, masses of numerous elementary particles starting from electron were evaluated in 2007 with accuracy less than 1 %.2 pentaquarks, 휃휃+barion, Higgs boson and particle 28 GeV were discovered 11 years later, all of them were evaluated with high accuracy before.


Sign in / Sign up

Export Citation Format

Share Document