scholarly journals Many-body quantum dynamics slows down at low density

2020 ◽  
Vol 9 (5) ◽  
Author(s):  
Xiao Chen ◽  
Yingfei Gu ◽  
Andrew Lucas

We study quantum many-body systems with a global U(1) conservation law, focusing on a theory of N interacting fermions with charge conservation, or N interacting spins with one conserved component of total spin. We define an effective operator size at finite chemical potential through suitably regularized out-of-time-ordered correlation functions. The growth rate of this density-dependent operator size vanishes algebraically with charge density; hence we obtain new bounds on Lyapunov exponents and butterfly velocities in charged systems at a given density, which are parametrically stronger than any Lieb-Robinson bound. We argue that the density dependence of our bound on the Lyapunov exponent is saturated in the charged Sachdev-Ye-Kitaev model. We also study random automaton quantum circuits and Brownian Sachdev-Ye-Kitaev models, each of which exhibit a different density dependence for the Lyapunov exponent, and explain the discrepancy. We propose that our results are a cartoon for understanding Planckian-limited energy-conserving dynamics at finite temperature.

2020 ◽  
Vol 11 (1) ◽  
pp. 467-499 ◽  
Author(s):  
Dominic V. Else ◽  
Christopher Monroe ◽  
Chetan Nayak ◽  
Norman Y. Yao

Experimental advances have allowed for the exploration of nearly isolated quantum many-body systems whose coupling to an external bath is very weak. A particularly interesting class of such systems is those that do not thermalize under their own isolated quantum dynamics. In this review, we highlight the possibility for such systems to exhibit new nonequilibrium phases of matter. In particular, we focus on discrete time crystals, which are many-body phases of matter characterized by a spontaneously broken discrete time-translation symmetry. We give a definition of discrete time crystals from several points of view, emphasizing that they are a nonequilibrium phenomenon that is stabilized by many-body interactions, with no analog in noninteracting systems. We explain the theory behind several proposed models of discrete time crystals, and compare several recent realizations, in different experimental contexts.


2011 ◽  
Vol 134 (17) ◽  
pp. 174109 ◽  
Author(s):  
Ionuţ Georgescu ◽  
Jason Deckman ◽  
Laura J. Fredrickson ◽  
Vladimir A. Mandelshtam

Sign in / Sign up

Export Citation Format

Share Document