scholarly journals Virial expansion coefficients in the unitary Fermi gas

Author(s):  
Shimpei Endo

Virial expansion is widely used in cold atoms to analyze high temperature strongly correlated many-body systems. As the n-th order virial expansion coefficient can be accurately obtained by exactly solving up to n-body problems, the virial expansion offers a few-body approach to study strongly correlated many-body problems. In particular, the virial expansion has successfully been applied to unitary Fermi gas. We review recent progress of the virial expansion studies in the unitary Fermi gas, in particular the fourth order virial coefficient.

2021 ◽  
Vol 7 (17) ◽  
pp. eabd9275
Author(s):  
Samuel Beaulieu ◽  
Shuo Dong ◽  
Nicolas Tancogne-Dejean ◽  
Maciej Dendzik ◽  
Tommaso Pincelli ◽  
...  

Fermi surface is at the heart of our understanding of metals and strongly correlated many-body systems. An abrupt change in the Fermi surface topology, also called Lifshitz transition, can lead to the emergence of fascinating phenomena like colossal magnetoresistance and superconductivity. While Lifshitz transitions have been demonstrated for a broad range of materials by equilibrium tuning of macroscopic parameters such as strain, doping, pressure, and temperature, a nonequilibrium dynamical route toward ultrafast modification of the Fermi surface topology has not been experimentally demonstrated. Combining time-resolved multidimensional photoemission spectroscopy with state-of-the-art TDDFT+U simulations, we introduce a scheme for driving an ultrafast Lifshitz transition in the correlated type-II Weyl semimetal Td-MoTe2. We demonstrate that this nonequilibrium topological electronic transition finds its microscopic origin in the dynamical modification of the effective electronic correlations. These results shed light on a previously unexplored ultrafast scheme for controlling the Fermi surface topology in correlated quantum materials.


2021 ◽  
Vol 9 ◽  
Author(s):  
Masaaki Tokieda ◽  
Shimpei Endo

We analytically study quantum dissipative dynamics described by the Caldirola-Kanai model with inter-particle interactions. We have found that the dissipative quantum dynamics of the Caldirola-Kanai model can be exactly mapped to a dissipationless quantum dynamics under a negative external harmonic potential, even when the particles are strongly interacting. In particular, we show that the mapping is valid for the unitary Fermi gas, which is relevant for cold atoms and nuclear matters.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Boris Ponsioen ◽  
Fakher Assaad ◽  
Philippe Corboz

The excitation ansatz for tensor networks is a powerful tool for simulating the low-lying quasiparticle excitations above ground states of strongly correlated quantum many-body systems. Recently, the two-dimensional tensor network class of infinite projected entangled-pair states gained new ground state optimization methods based on automatic differentiation, which are at the same time highly accurate and simple to implement. Naturally, the question arises whether these new ideas can also be used to optimize the excitation ansatz, which has recently been implemented in two dimensions as well. In this paper, we describe a straightforward way to reimplement the framework for excitations using automatic differentiation, and demonstrate its performance for the Hubbard model at half filling.


Author(s):  
Tsuneya Yoshida ◽  
Robert Peters ◽  
Norio Kawakami ◽  
Yasuhiro Hatsugai

Abstract Quasi-particles described by Green‘s functions of equilibrium systems exhibit non-Hermitian topological phenomena because of their finite lifetime. This non-Hermitian perspective on equilibrium systems provides new insights into correlated systems and attracts much interest because of its potential to solve open questions in correlated compounds. We provide a concise review of the non-Hermitian topological band structures for quantum many-body systems in equilibrium, as well as their classification.


Author(s):  
Sandro Wimberger

We revisit fidelity as a measure for the stability and the complexity of the quantum motion of single-and many-body systems. Within the context of cold atoms, we present an overview of applications of two fidelities, which we call static and dynamical fidelity, respectively. The static fidelity applies to quantum problems which can be diagonalized since it is defined via the eigenfunctions. In particular, we show that the static fidelity is a highly effective practical detector of avoided crossings characterizing the complexity of the systems and their evolutions. The dynamical fidelity is defined via the time-dependent wave functions. Focusing on the quantum kicked rotor system, we highlight a few practical applications of fidelity measurements in order to better understand the large variety of dynamical regimes of this paradigm of a low-dimensional system with mixed regular–chaotic phase space.


Sign in / Sign up

Export Citation Format

Share Document