scholarly journals Sophora flavescens Alkaloids and Corticosteroid Synergistically Augment IL-10/IL-5 Ratio with Foxp3-Gene-Epigenetic Modification in Asthma PBMCs

2021 ◽  
Vol Volume 14 ◽  
pp. 1559-1571
Author(s):  
Ying Song ◽  
Zhen-Zhen Wang ◽  
Lixin Wang ◽  
Paul Faybusovich ◽  
Kamal Srivastava ◽  
...  
Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
C Erdelmeier ◽  
H Hauer ◽  
E Koch
Keyword(s):  

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
A Triastuti ◽  
M Vansteelandt ◽  
F Barakat ◽  
P Jargeat ◽  
L Rieusset ◽  
...  

2014 ◽  
Author(s):  
Artur Bossowski ◽  
Hanna Borysewicz-Sanczyk ◽  
Natalia Wawrusiewicz-Kurylonek ◽  
Mieczyslaw Szalecki ◽  
Beata Wikiera ◽  
...  

2015 ◽  
Vol 12 (1) ◽  
pp. 384-390
Author(s):  
Mary Pathak ◽  
◽  
Liming Lei ◽  
Nan Wang ◽  
Maria Bolick ◽  
...  

2007 ◽  
Vol 30 (4) ◽  
pp. 90
Author(s):  
Kirsten Niles ◽  
Sophie La Salle ◽  
Christopher Oakes ◽  
Jacquetta Trasler

Background: DNA methylation is an epigenetic modification involved in gene expression, genome stability, and genomic imprinting. In the male, methylation patterns are initially erased in primordial germ cells (PGCs) as they enter the gonadal ridge; methylation patterns are then acquired on CpG dinucleotides during gametogenesis. Correct pattern establishment is essential for normal spermatogenesis. To date, the characterization and timing of methylation pattern acquisition in PGCs has been described using a limited number of specific gene loci. This study aimed to describe DNA methylation pattern establishment dynamics during male gametogenesis through global methylation profiling techniques in a mouse model. Methods: Using a chromosome based approach, primers were designed for 24 regions spanning chromosome 9; intergenic, non-repeat, non-CpG island sequences were chosen for study based on previous evidence that these types of sequences are targets for testis-specific methylation events. The percent methylation was determined in each region by quantitative analysis of DNA methylation using real-time PCR (qAMP). The germ cell-specific pattern was determined by comparing methylation between spermatozoa and liver. To examine methylation in developing germ cells, spermatogonia from 2 day- and 6 day-old Oct4-GFP (green fluorescent protein) mice were isolated using fluorescence activated cell sorting. Results: As compared to liver, four loci were hypomethylated and five loci were hypermethylated in spermatozoa, supporting previous results indicating a unique methylation pattern in male germ cells. Only one region was hypomethylated and no regions were hypermethylated in day 6 spermatogonia as compared to mature spermatozoa, signifying that the bulk of DNA methylation is established prior to type A spermatogonia. The methylation in day 2 spermatogonia, germ cells that are just commencing mitosis, revealed differences of 15-20% compared to day 6 spermatogonia at five regions indicating that the most crucial phase of DNA methylation acquisition occurs prenatally. Conclusion: Together, these studies provide further evidence that germ cell methylation patterns differ from those in somatic tissues and suggest that much of methylation at intergenic sites is acquired during prenatal germ cell development. (Supported by CIHR)


Sign in / Sign up

Export Citation Format

Share Document