scholarly journals The Potentiality of Human Umbilical Cord Isolated Mesenchymal Stem/Stromal Cells for Cardiomyocyte Generation [Corrigendum]

2021 ◽  
Vol Volume 14 ◽  
pp. 1-2
Author(s):  
Amoura Abou-ElNaga ◽  
Farha El-Chennawi ◽  
Samar Ibrahim kamel ◽  
Ghada Mutawa
2020 ◽  
Author(s):  
Liem Nguyen Thanh ◽  
Thai Trieu Thi Hong ◽  
Hue Bui Thi Hong ◽  
Van T. Hoang ◽  
Anh Nguyen Thi Tuyet ◽  
...  

Abstract Background: Bronchopulmonary dysplasia (BPD) is a severe condition in premature infants that compromises theirlung function and necessitatesoxygen support. Despite major improvements in perinatal care minimizing the devastating effects, BPD remains the most frequent complication of extreme preterm birth. Our study reports the safety ofthe allogeneic administration of umbilical cord-derived mesenchymal stem/stromal cells (allo-UC-MSCs) and the preliminary efficacy of the treatment in four infants with established BPD.Methods: UC tissue was collected from a healthy donor, followed by propagation at the Stem Cell Core Facility at Vinmec Research Institute of Stem Cell and Gene Technology. UC-MSC culture was conducted under xeno-free and serum-free conditions. Four patients with established BPD were enrolled in this study between May 25, 2018, and December 31, 2018. All four patients received two intravenous doses of allo-UC-MSCs (1 million cells/kg patient body weight (PBW) per dose) with an intervening interval of 7 days. Safety and efficacy were evaluated during hospitalization and at 7 days and 1, 6 and 12 postdischargemonths.Results: No transplantation-associated severe adverse events or prespecified adverse events were observed in the four patients throughout the study period. At the time of this report, all patients had recovered from BPD and been weaned off of oxygen support. Chest X-rays and CT scans confirmed the dramatic reduction infibrosis.Conclusions: Allo-UC-MSC transplantation is safe and might improve respiratory function anddecrease lung fibrosis in preterm infants with established BPD.Trial registration: This preliminary study was approved by Vinmec International Hospital Ethics Board, approval number: 88/2019/QĐ-VMEC, registered 12 March 2019 - retrospectively registered.


Author(s):  
G. T. Sukhikh ◽  
A. V. Degtyareva ◽  
D. N. Silachev ◽  
K. V. Gorunov ◽  
I. V. Dubrovina ◽  
...  

The article presents the results of intravenous transplantation of allogeneic multipotent mesenchymal stromal cells, derived from a human umbilical cord, to a child with Crigler–Najjarsyndrome type I during the first 2 years of life. The therapy is aimed at reduction of the duration of phototherapy while maintaining a safe level of serum bilirubin.In this study, a five-day-old child with the bilirubin level of 340 µmol/l was treated with phototherapy for 16–18 hours daily in the neonatal period. Then, phototherapy was reduced to 14–16 hours. The level of bilirubin varied from 329 to 407 μmol/l. At the age of 2 months, it was decided to use multipotent mesenchymal stromal cells with a significant decrease in the duration of phototherapy up to 2 hours a day. During the observation period (2 years at the time of writing this article) the child received 6 injections of multipotent mesenchymal stromal cells. A positive effect developed within 4–7 days after administration and persisted for 2–3 months. There were no side effects or complications during and after transplantation.Thus, intravenous transplantation of multipotent mesenchymal stromal cells is an effective treatment of Crigler–Najjar syndrome type I; it reducesthe need for phototherapy,significantly improvesthe quality of life of the patients and prolongstheir life with native liver. 


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Farwah Iqbal ◽  
Peter Szaraz ◽  
Jun Wu ◽  
Andree Gauthier-Fisher ◽  
Ren-Ke Li ◽  
...  

Introduction: Cell therapy employing pro-angiogenic cell types is a promising option for promoting revascularization of ischemic tissues. First trimester human umbilical cord perivascular cells (FTM HUCPVCs) are a young source of mesenchymal stromal cells (MSCs) that support blood vessels in the umbilical cord. Objective: We aimed to determine the angiogenic potential of FTM HUCPVCs using angiogenic potency assays and compare to older sources of MSCs: term HUCPVCs and bone marrow stromal cells (BMSCs). Methods: For the aortic ring assay, aortas were sectioned and embedded into Matrigel™. Fluorophore-labeled MSCs for testing were added to developing endothelial networks (Day0). MSC integration and network development were monitored by microscopy and quantification of endothelial networks was performed using ImageJ™ software (Day4) n=3. Using the Matrigel™ plug assay, 5.0 x10 5 MSCs were suspended with equal volumes of Matrigel™ and injected subcutaneously in 11-week-old nude mice and isolated after two weeks. Plug associated microvasculature was imaged and quantified n=3. Results: In the aortic ring assay, FTM HUCPVCs homed to endothelial networks and demonstrated greater endothelial cell coverage, when compared to term HUCPVCs and BMSCs. FTM HUCPVCs showed significantly greater network growth when compared to term HUCPVCs ( p ≤0.001), BMSCs ( p ≤0.001) and untreated endothelial networks ( p ≤0.001). FTM HUCPVC contributed to a significantly greater number of closed loops when compared to term HUCPVCs ( p ≤0.01), BMSCs ( p ≤0.001) and untreated networks ( p ≤0.05). At two weeks following injection of Matrigel plugs, FTM HUCPVC resulted in significantly greater blood vessel recruitment when compared to term HUCPVCs ( p ≤0.05), BMSCs ( p ≤0.01) and control media plugs ( p ≤0.01). Small tortuous blood vessels were found in significantly higher quantity in FTM HUCPVC injected plugs when compared to term HUCPVCs ( p ≤0.05), BMSCs (p ≤0.01) and media plugs ( p ≤0.001). Conclusions: These studies demonstrate that FTM HUCPVCs have superior potential to augment, both the initiation of capillary formation and the development of functional, perfusable blood vessels, highlighting their potential for tissue regeneration following ischemic injury.


Cytotherapy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. S111-S112
Author(s):  
R. Wagey ◽  
K. Bertram ◽  
M. Elliott ◽  
A. Eaves ◽  
S. Szilvassy ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Anton Selich ◽  
Katharina Zimmermann ◽  
Michel Tenspolde ◽  
Oliver Dittrich-Breiholz ◽  
Constantin von Kaisenberg ◽  
...  

Abstract Background Mesenchymal stromal cells (MSCs) are used in over 800 clinical trials mainly due to their immune inhibitory activity. Umbilical cord (UC), the second leading source of clinically used MSCs, is usually cut in small tissue pieces. Subsequent cultivation leads to a continuous outgrowth of MSC explant monolayers (MSC-EMs) for months. Currently, the first MSC-EM culture takes approximately 2 weeks to grow out, which is then expanded and applied to patients. The initiating tissue pieces are then discarded. However, when UC pieces are transferred to new culture dishes, MSC-EMs continue to grow out. In case the functional integrity of these cells is maintained, later induced cultures could also be expanded and used for cell therapy. This would drastically increase the number of available cells for each patient. To test the functionality of MSC-EMs from early and late induction time points, we compared the first cultures to those initiated after 2 months by investigating their clonality and immunomodulatory capacity. Methods We analyzed the clonal composition of MSC-EM cultures by umbilical cord piece transduction using integrating lentiviral vectors harboring genetic barcodes assessed by high-throughput sequencing. We investigated the transcriptome of these cultures by microarrays. Finally, the secretome was analyzed by multiplexed ELISAs, in vitro assays, and in vivo in mice. Results DNA barcode analysis showed polyclonal MSC-EMs even after months of induction cycles. A transcriptome and secretome analyses of early and late MSC cultures showed only minor changes over time. However, upon activation with TNF-α and IFN-γ, cells from both induction time points produced a multitude of immunomodulatory cytokines. Interestingly, the later induced MSC-EMs produced higher amounts of cytokines. To test whether the different cytokine levels were in a therapeutically relevant range, we used conditioned medium (CM) in an in vitro MLR and an in vivo killing assay. CM from late induced MSC-EMs was at least as immune inhibitory as CM from early induced MSC-EMs. Conclusion Human umbilical cord maintains a microenvironment for the long-term induction of polyclonal and immune inhibitory active MSCs for months. Thus, our results would offer the possibility to drastically increase the number of therapeutically applicable MSCs for a substantial amount of patients.


Sign in / Sign up

Export Citation Format

Share Document