scholarly journals Finite Element Analysis of Titanium Foam in Mechanical Response for Dental Application

2021 ◽  
Vol 25 (1) ◽  
pp. 6-13
Author(s):  
Snehashis Pal ◽  
Igor Drstvenšek
2019 ◽  
Vol 86 ◽  
pp. 149-159 ◽  
Author(s):  
Yekutiel Katz ◽  
Gal Dahan ◽  
Jacob Sosna ◽  
Ilan Shelef ◽  
Evgenia Cherniavsky ◽  
...  

2013 ◽  
Vol 554-557 ◽  
pp. 2414-2423 ◽  
Author(s):  
Rachid Djeridi ◽  
Mohand Ould Ouali

Modeling anisotropic behavior of fiber reinforced rubberlike materials is actually of a great interest in many industrials sectors. Indeed, accurately description of the mechanical response and damage of such materials allows the increase of the lifecycle of these materials which generally evolve under several environment conditions. In this paper theoretical study and finite element analysis of anisotropic biomaterials is presented. The mechanical model adopted to achieve this study has been implemented into the finite element code Abaqus using an implicit scheme. This constitutive law has been utilized to perform some numerical simulations. The material parameters of the model have been determined by numerical calibration. One fiber family is considered in this work. Effects of the fiber orientation on the mechanical response and stiffness change of biomaterial is studied. Both the compressible and incompressible states have been taken into account. The results show firstly the capability of the model to reproduce the known results and that optimal fiber orientation can be found.


Author(s):  
A Strozzi ◽  
A Unsworth

Finite element analysis of compliant layered artificial hip joints has been used to study the mechanical response of four different layer thicknesses from 0.5 to 3 mm. The results have been compared with a classical asymptotic model in terms of maximum contact pressure and contact width, and of maximum shear stress at the layer-backing interface and its location. The surface deformations and load capacities have also been compared. The best thickness was found to be 2 mm; though a marginal reduction in stresses would be found in the 3 mm layer, the penetrations would be greater and these might have implications for the fatigue life of the material. A formula for the thickness of the fluid film has been derived on the basis of the inverse hydrodynamic theory and the results show good correlation with existing theories.


Author(s):  
Regina Furbino Villefort ◽  
Pedro Jacy Santos Diamantino ◽  
Sandra Lúcia Ventorin von Zeidler ◽  
Alexandre Luiz Souto Borges ◽  
Laís Regiane Silva-Concílio ◽  
...  

Abstract Objective Polymeric framework represent an innovative approach for implant-supported dental prostheses. However, the mechanical response of ultra-high performance polymers as frameworks for full-arch prostheses under the “all-on-four concept” remains unclear. The present study applied finite element analysis to examine the behavior of polyetherketoneketone (PEKK) and polyetheretherketone (PEEK) prosthetic frameworks. Materials and Methods A three-dimensional maxillary model received four axially positioned morse-taper implants, over which a polymeric bar was simulated. The full-arch prosthesis was created from a previously reported database model, and the imported geometries were divided into a mesh composed of nodes and tetrahedral elements in the analysis software. The materials were assumed as isotropic, elastic, and homogeneous, and all contacts were considered bonded. A normal load (500 N magnitude) was applied at the occlusal surface of the first left molar after the model was fixed at the base of the cortical bone. The microstrain and von-Mises stress were selected as criteria for analysis. Results Similarities in the mechanical response were observed in both framework for the peri-implant tissue, as well as for stress generated in the implants (263–264 MPa) and abutments (274–273 MPa). The prosthetic screw and prosthetic base concentrated more stress with PEEK (211 and 58 MPa, respectively) than with PEKK (192 and 49 MPa), while the prosthetic framework showed the opposite behavior (59 MPa for PEEK and 67 MPa for PEKK). Conclusion The main differences related to the mechanical behavior of PEKK and PEEK frameworks for full-arch prostheses under the “all-on-four concept” were reflected in the prosthetic screw and the acrylic base. The superior shock absorbance of PEKK resulted in a lower stress concentration on the prosthetic screw and prosthetic base. This would clinically represent a lower fracture risk on the acrylic base and screw loosening. Conversely, lower stress concentration was observed on PEEK frameworks.


Author(s):  
M. Fahed ◽  
I. Barsoum

Carbon steel pipelines are renowned for their long-term resistance to the hydrostatic pressure of the transported fluid. Nevertheless, failure of carbon steel pipes can be catastrophic if not predicted or mitigated properly. One of the most common failure causes in carbon steel pipelines is corrosion of the pipeline inner and outer surfaces. The corrosion on pipeline walls will eventually lead to severe loss of material to a point which will cause complete loss of pipeline integrity. The study will assess the burst pressure of predefined internal corrosion-defected carbon steel pipelines through finite element analysis. The mechanical response of the host carbon steel pipeline is empirically estimated. A set of corrosion defect geometrical sizes, such as depth width and length to be considered is carefully developed. Accordingly, a parametric study considering the developed set of defect geometrical parameters, as well as the mechanical response of the pipe material, is conducted. The parametric study is performed through finite element analysis to investigate the influence of the highlighted parameters to the overall burst pressure of the pipe. Based on the results from parametric study of corrosion-defected carbon steel pipelines, the Buckingham π-theorem modelling approach is used to derive an analytical closed-form expression to predict the burst pressure of defected pipes containing internal corrosion defects of an arbitrary size.


Sign in / Sign up

Export Citation Format

Share Document