scholarly journals Assessing the Representation of Intraseasonal Oscillation-Related Ocean Forcing in the Tropics in Atmospheric Reanalyses

Author(s):  
Wei-Ching HSU ◽  
Kazuyoshi KIKUCHI ◽  
H. ANNAMALAI ◽  
Kelvin J. RICHARDS
2012 ◽  
Vol 140 (6) ◽  
pp. 1748-1760 ◽  
Author(s):  
Kyong-Hwan Seo ◽  
Eun-Ji Song

Abstract Potential vorticity (PV) thinking conceptually connects the upper-level (upper troposphere in the extratropics and middle troposphere for the tropics) dynamical process to the lower-level process. Here, the initiation mechanism of the boreal summer intraseasonal oscillation (BSISO) in the tropics is investigated using PV thinking. The authors demonstrate that the midtropospheric PV anomaly produces a dynamical environment favorable for the BSISO initiation. Under seasonal easterly vertical wind shear, the PV anomaly enhances low-level convergence and upward motion at its western edge. Tropical PV forcing in the middle troposphere produces balanced mass and circulation fields that spread horizontally and vertically so that its effect can reach even the lowest troposphere. The downward influence of the midtropospheric PV forcing is one of the key aspects of the PV thinking. Direct piecewise PV inversions confirm that the anomalous lower-level zonal wind and its convergence necessary for the initiation of BSISO convection do not arise solely from the response to the lower-level PV forcing but from the summed contribution by PV forcing at all levels. About 50% of the low-level circulation variations result from PV forcing from 700 to 450 hPa, with the largest contribution from the 600–650-hPa PV anomalies for the convection initiation region over the western Indian Ocean. The current study is compared with and incorporated into the thermodynamic recharge process and the frictional moisture flux convergence mechanism for the BSISO initiation. This study is the first qualitative application of the PV thinking approach that reveals the BSISO dynamics.


2012 ◽  
Vol 25 (14) ◽  
pp. 5072-5087 ◽  
Author(s):  
Jau-Ming Chen ◽  
Ching-Feng Shih

Abstract Tropical cyclones (TCs) of a particular track type move northward along the open oceans to the east of Taiwan and later pass over or near northern Taiwan. Their northward movement may be associated with intensified monsoon southwesterly flows from the northern South China Sea (SCS) toward Taiwan. Prolonged heavy rainfall then occurs in western Taiwan across the landfall and postlandfall periods, leading to severe floods. Characteristics of this TC–southwesterly flow association and related large-scale regulatory processes of intraseasonal oscillations (ISOs) are studied. For summers from 1958 to 2009, 16 out of 108 TCs affecting Taiwan exhibit the aforementioned northward-moving track. Among them, four TCs (25%) concur with enhanced southwesterly flows. Intensified moisture supplies from the SCS result in strong moisture convergence and prolonged heavy rainfall in western Taiwan. Both 30–60- and 10–24-day ISOs make positive contributions to the TC–southwesterly flow association. Both ISOs exhibit the northward progress of a meridional circulation pair from the tropics toward Taiwan. During landfall and the ensuing few days, Taiwan is surrounded by a cyclonic anomaly to the north and an anticyclonic anomaly to the south of these two ISOs. The appearance of anomalous southwesterly–westerly flows acts to prolong heavy rainfall in western Taiwan after the departure of a TC. The TC–southwesterly flow association tends to occur during the minimum phase of the 30–60-day ISO featuring a cyclonic anomaly in the vicinity of Taiwan but in various phases of the 10–24-day ISO. Rainfall in western Taiwan increases when these two ISOs simultaneously exhibit a cyclonic anomaly to the north of Taiwan.


2018 ◽  
Vol 99 (9) ◽  
pp. 1765-1779 ◽  
Author(s):  
Tim Li ◽  
Lu Wang ◽  
Melinda Peng ◽  
Bin Wang ◽  
Chidong Zhang ◽  
...  

AbstractThe Madden–Julian oscillation (MJO) identified by Madden and Julian in the early 1970s has been well recognized as the most prominent intraseasonal signal in the tropics. Its discovery and its relationship with other weather phenomena such as tropical cyclones (TCs) are among the most significant advancements in modern meteorology with broad and far-reaching impacts. The original study by Madden and Julian used radiosonde data on Canton Island, and their spectral analysis revealed the signal of a 40–50-day oscillation.It has come to our attention that an earlier study by Xie et al. published in a Chinese journal documented an oscillatory signal of a 45-day period using radiosonde data from several stations between 70° and 125°E in the tropics. The 40–50-day signal found by Xie et al. is strikingly evident without any filtering. Xie et al. identified that occurrences of TCs are correlated with the 40–50-day variation of low-level westerlies at these stations. The original figures in Xie et al.’s article were hand drawn. Their results are verified using data from a longer period of 1958–70. The 40–50-day oscillation in the monsoon westerlies and its relationship with the occurrence of TCs are confirmed and further expanded upon.This study serves the purpose of bringing recognition to the community of the identification of a 40–50-day signal published in Chinese in 1963 and the discovery of the correlation between MJO phases and TC genesis three decades earlier than studies on this subject published outside China.


2003 ◽  
Vol 23 (1) ◽  
pp. 88-106 ◽  
Author(s):  
Vijitr Boonpucknavig ◽  
Virawudh Soontornniyomkij
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document