scholarly journals Arrangement of Players Position in Soccer Using the Technique of Naive Bayes

Author(s):  
Gusti Made Trisetya Putra ◽  
Muhammad Rusli

In the modern soccer era, soccer is already considered as an entertainment, even modern soccer already become as an industry or a business that considered can bring a great profit to the club owner. One of the most important factor in building a team is young age soccer player development. Right young age soccer player development method, can be very helpful in establish a good team. A professional team must have acoach, for the first team or junior team. The duties of a coach is determine a right position for soccer player in the game, this duties sometimes make a coach is hard to making a right decision. This research will discussabout how to design a decision support system for determine soccer player using naive bayes technique. Data mining used naive bayes technique for find a prediction for soccer player based on the player skill test result. From this research result, it can be seen that by using decision support system using data mining with naive bayes technique can be help coach performance in determine position for soccer player especially for young age soccer player development so that can help coach in the making right decision effectively and efficiently.

Techno Com ◽  
2018 ◽  
Vol 17 (2) ◽  
pp. 208-219
Author(s):  
Alvino Dwi Rachman Prabowo ◽  
Muljono Muljono

Deposito masih merupakan pilihan utama bagi masyarakat untuk berinvestasi saat ini dan hal itu merupakan kesempatan bagi bank-bank untuk menentukan strategi pemasaran dan promosi yang lebih efisien dengan tidak terlalu banyak menggunakan biaya sehingga masyarakat tertarik untuk berinvestasi pada produk deposito dari bank tersebut. Atas dasar permasalahan tersebut, maka dilakukan penelitian untuk memprediksi nasabah yang berpotensi membuka deposito dengan menggunakan teknik data mining khususnya algoritma Naive Bayes berbasis PSO. PSO pada penelitian ini akan digunakan untuk feature selection yaitu dengan memilih attribut terbaik dengan memilih attribut yang sudah diberikan bobot sehingga dapat meningkatkan hasil akurasi dari prediksi menggunakan algoritma Naive Bayes. Hasil dari prediksi nasabah yang berpotensi membuka deposito dengan menggunakan Naive Baiyes memiliki akurasi sebesar 82,19%. Sedangkan prediksi yang menggunakan Naive Baiyes berbasis PSO memiliki akurasi sebesar 89,70%. Penggunaan algoritma PSO ternyata meningkatkan akurasi sebesar 7,51% dan algoritma Naive Baiyes berbasis PSO tersebut dapat digunakan untuk decision support system nasabah yang berpotensi membuka deposito karena menjadi model algoritma yang terbaik. 


2019 ◽  
Vol 2 (1) ◽  
pp. 40-46
Author(s):  
Rikardo Chandra ◽  
Izmy alwiah Musdar ◽  
Junaedy .

This study aims to design and build web-based decision support system applications used to recommend the best tourist attractions in South Sulawesi to tourists. The expected benefit of this research is to help the user get the best tourist recommendation information available in South Sulawesi based on the conditions in input factors. The theorem or method used in this study, namely the theorem Naïve Bayes. The design of the system isimplemented using PHP programming language and MYSQL database. Based on the results of the research, the authors have successfully built the application of decision support system to determine the recommendation of tourist attractions in South Sulawesi with 65% accuracy based on 20 tests conducted.


Author(s):  
Moh. Syaiful Anam

Covid-19 telah menjadi pandemi yang menyebar hampir ke seluruh penjuru dunia. Karena proses penularannya yang begitu cepat Dalam masa pandemi covid -19, pandemi ini menyebar ke seluruh sendi kehidupan dan salah satu yang paling menjadi perhatian adalah dibidang sosial ekonomi. Banyak terdapat bantuan Sosial (Bansos) yang disalurkan baik oleh pemerintah ataupun pihak swasta lain. Penelitian ini bertujuan untuk membuat sistem pendukung keputusan bantuan sosial menggunakan metode Naive Bayes, selanjutnya melakukan Analisa menggunakan tabel Confusion Matrix.  Dalam menyelesaikan masalah dengan menggunakan metode Naive Bayes dari hasil pembahasan yang dilakukan dapat ditarik kesimpulan Naive Bayes dan aturan yang dihasilkan memiliki tingkat akurasi tinggi (good) yaitu sebesar 73% dan Sementara nilai Precision sebesar 92% dan Recall sebesar 86%. Sehingga metode Naive Bayes dapat diterapkan dalam menentukan prediksi yang lebih banyak dan potensial aturan yang dihasilkan untuk membantu menentukan pemberian bantuan sosial.


Sign in / Sign up

Export Citation Format

Share Document