scholarly journals Formulation of Entomopathogenic Nematodes for the Control of Key Pests of Grapevine: A Review

2021 ◽  
Vol 42 (2) ◽  
Author(s):  
A. Nxitywa ◽  
A.P. Malan

Entomopathogenic nematodes (EPNs) are insect parasites that are used successfully as biological controlagents against key pest insects of grapevine. To achieve low chemical residues and the sustainableproduction of grapes, it is important that biological control agents such as entomopathogenic nematodesfor the control of grapevine insect pests be incorporated in an integrated pest management system forgrape production. However, the commercialisation and large-scale use of EPNs is limited by their shortshelf life in formulations and in storage, thus leading to poor quality and reduced efficacy against insectsin the field. In South Africa, interest in the use of EPNs within an integrated pest management system hasgrown over the past two decades, therefore developing a formulation technique with an acceptable storagesurvival period, while maintaining infectivity, is essential. Moreover, the successful control of insects usingEPNs is only achievable when the formulated product reaches the end user in good condition. This reviewis focused on the different types of formulations required for storage and ease of transport, together withthe application formulation for above-ground pests and the factors affecting them. The quality assessment,storage and handling of formulated EPNs are also discussed.

Author(s):  
A.J. Scholtz ◽  
S.W.P. Cloete ◽  
J.M. Laubscher ◽  
E.F. De Beer

An insecticide-free sheep blowfly trapping system, utilising a synthetic lure, was evaluated at 4 localities in the Western Cape. Control sites, where no suppression was practised, were identified for each locality. The blowfly population was monitored for 48 hours monthly at each of the localities. Five to 7 suppression traps at the respective localities were identified for this purpose. Three to 10 traps were set monthly for monitoring in the control areas. Trapping resulted in the suppression (P <0.01) of the Lucilia population at Caledon, where a large area of approximately 50 km 2 was trapped. The suppression area of all the localities was =850 ha. At Elsenburg, blowfly numbers were low. There was a strong suggestion of a general reduction in the Lucilia numbers at this locality. Trapping failed to reduce Lucilia numbers at Tygerhoek and Langgewens. Lack of control over the influx of Lucilia from adjacent sheep-producing areas probably contributed to this result. The observed response at Elsenburg was probably due to its situation in a predominantly wine-growing area. Most of the blowflies recovered from the control traps during the month with the highest yield at the respective localities belonged to the genus Lucilia. The results obtained at Caledon and published reports suggest that large-scale trapping of Lucilia spp. may play a role in an integrated pest management system for blowflies.


2019 ◽  
Vol 19 (4) ◽  
Author(s):  
Catherine M Little ◽  
Thomas W Chapman ◽  
N Kirk Hillier

AbstractThe past 100 yr have seen dramatic philosophical shifts in our approach to controlling or managing pest species. The introduction of integrated pest management in the 1970s resulted in the incorporation of biological and behavioral approaches to preserve ecosystems and reduce reliance on synthetic chemical pesticides. Increased understanding of the local ecosystem, including its structure and the biology of its species, can improve efficacy of integrated pest management strategies. Pest management strategies incorporating insect learning paradigms to control insect pests or to use insects to control other pests can mediate risk to nontarget insects, including pollinators. Although our understanding of insect learning is in its early stages, efforts to integrate insect learning into pest management strategies have been promising. Due to considerable differences in cognitive abilities among insect species, a case-by-case assessment is needed for each potential application of insect learning within a pest management strategy.


2020 ◽  
Vol 57 (5) ◽  
pp. 1342-1348
Author(s):  
Jennifer R Gordon

Abstract Urban insect pests such as ants, termites, cockroaches, and bed bugs are more than just nuisances; they often negatively impact structures, landscapes, animal health, commercial food production, food safety, and public health (mental, physical, and financial). Due to the tremendous burden these insects can inflict, researchers, manufacturers, and pest management professionals work to create solutions that effectively manage urban and structural pests. One solution that has proven useful in agriculture is the development of an integrated pest management (IPM) plan; i.e., a science-based approach to pest control that utilizes multiple tactics such as preventative tools, chemical control (sprays, fumigation, and baits), biological control, and exclusion. There are many permutations of urban IPM plans, but in general they consist of five components: 1) identifying the pest, 2) monitoring the pest, 3) developing an intervention plan (including prevention and control techniques), 4) implementing the program, and 5) recording and evaluating the results. The objectives of the current publication were to 1) highlight urban entomology research published in 2019 and 2) show how the results from these publications help pest management professionals create and implement IPM plans.


Author(s):  
A. A. Motaphale ◽  
B. B. Bhosle

The investigation was carried out during kharif 2010-2011 and 2011-2012 in order to know the effect of different IPM module on insect pests of soybean. Significantly lower population of (2.54 larvae/ mrl) H.armigera, per cent pod damage (4.23%) by H.armigera were observed in MAU module. The minimum larval population of semilooper (3.62 larvae/mrl), S.litura (2.64 larvae/mrl) and per cent leaflet damage (6.71%) due to leaf miner, the minimum per cent defoliation (10.49%) due to defoliators were observed in chemical control followed by MAU module.


Sign in / Sign up

Export Citation Format

Share Document