Validation of Integrated Pest Management modules ondefoliating insect pests of soybean

Author(s):  
A. A. Motaphale ◽  
B. B. Bhosle

The investigation was carried out during kharif 2010-2011 and 2011-2012 in order to know the effect of different IPM module on insect pests of soybean. Significantly lower population of (2.54 larvae/ mrl) H.armigera, per cent pod damage (4.23%) by H.armigera were observed in MAU module. The minimum larval population of semilooper (3.62 larvae/mrl), S.litura (2.64 larvae/mrl) and per cent leaflet damage (6.71%) due to leaf miner, the minimum per cent defoliation (10.49%) due to defoliators were observed in chemical control followed by MAU module.

2019 ◽  
Vol 19 (4) ◽  
Author(s):  
Catherine M Little ◽  
Thomas W Chapman ◽  
N Kirk Hillier

AbstractThe past 100 yr have seen dramatic philosophical shifts in our approach to controlling or managing pest species. The introduction of integrated pest management in the 1970s resulted in the incorporation of biological and behavioral approaches to preserve ecosystems and reduce reliance on synthetic chemical pesticides. Increased understanding of the local ecosystem, including its structure and the biology of its species, can improve efficacy of integrated pest management strategies. Pest management strategies incorporating insect learning paradigms to control insect pests or to use insects to control other pests can mediate risk to nontarget insects, including pollinators. Although our understanding of insect learning is in its early stages, efforts to integrate insect learning into pest management strategies have been promising. Due to considerable differences in cognitive abilities among insect species, a case-by-case assessment is needed for each potential application of insect learning within a pest management strategy.


2008 ◽  
Author(s):  
Paul Horne ◽  
Jessica Page

Integrated Pest Management for Crops and Pastures describes in straightforward language what is required for farmers to successfully implement Integrated Pest Management (IPM) in cropping and grazing operations. It explains the differences between conventional pesticide-based controls and IPM, and demonstrates the advantages of IPM. Effective control of pests depends on a number of approaches, not just chemical or genetic engineering. The opening chapters cover the different approaches to pest management, and the importance of identification and monitoring of pests and beneficials. Most farmers and advisors can identify major pests but would struggle to recognise a range of beneficial species. Without this information it is impossible to make appropriate decisions on which control methods to use, especially where pests are resistant to insecticides. The book goes on to deal with the control methods: biological, cultural and chemical. The biological control agents discussed include both native and introduced species that attack pests. Cultural changes that have led to an increase in the incidence or severity of pest attack are also examined. The chapter on chemical control describes the different ways chemicals can affect beneficial species, also detailing acute, sub-lethal and transient toxicities of pesticides, drawing on examples from horticulture where necessary. Finally, the authors bring all the components of integrated pest management together and show farmers how to put their IPM plan into action.


2020 ◽  
Vol 57 (5) ◽  
pp. 1342-1348
Author(s):  
Jennifer R Gordon

Abstract Urban insect pests such as ants, termites, cockroaches, and bed bugs are more than just nuisances; they often negatively impact structures, landscapes, animal health, commercial food production, food safety, and public health (mental, physical, and financial). Due to the tremendous burden these insects can inflict, researchers, manufacturers, and pest management professionals work to create solutions that effectively manage urban and structural pests. One solution that has proven useful in agriculture is the development of an integrated pest management (IPM) plan; i.e., a science-based approach to pest control that utilizes multiple tactics such as preventative tools, chemical control (sprays, fumigation, and baits), biological control, and exclusion. There are many permutations of urban IPM plans, but in general they consist of five components: 1) identifying the pest, 2) monitoring the pest, 3) developing an intervention plan (including prevention and control techniques), 4) implementing the program, and 5) recording and evaluating the results. The objectives of the current publication were to 1) highlight urban entomology research published in 2019 and 2) show how the results from these publications help pest management professionals create and implement IPM plans.


2021 ◽  
Vol 42 (2) ◽  
Author(s):  
A. Nxitywa ◽  
A.P. Malan

Entomopathogenic nematodes (EPNs) are insect parasites that are used successfully as biological controlagents against key pest insects of grapevine. To achieve low chemical residues and the sustainableproduction of grapes, it is important that biological control agents such as entomopathogenic nematodesfor the control of grapevine insect pests be incorporated in an integrated pest management system forgrape production. However, the commercialisation and large-scale use of EPNs is limited by their shortshelf life in formulations and in storage, thus leading to poor quality and reduced efficacy against insectsin the field. In South Africa, interest in the use of EPNs within an integrated pest management system hasgrown over the past two decades, therefore developing a formulation technique with an acceptable storagesurvival period, while maintaining infectivity, is essential. Moreover, the successful control of insects usingEPNs is only achievable when the formulated product reaches the end user in good condition. This reviewis focused on the different types of formulations required for storage and ease of transport, together withthe application formulation for above-ground pests and the factors affecting them. The quality assessment,storage and handling of formulated EPNs are also discussed.


EDIS ◽  
2017 ◽  
Vol 2017 (1) ◽  
pp. 14
Author(s):  
Joseph E. Funderburk ◽  
Nicole Casuso ◽  
Norman C. Leppla ◽  
Michael Donahoe

  Insect and mite pests of cotton feed on cotton roots, leaves, stems, and fruit and reduce plant health and productivity, and, subsequently, cotton crop yields. These pests hide in different places on or within the plant or field, which makes them difficult to find and identify and costly to manage. The purpose of this 14-page guide written by Joseph Funderburk, Nicole Casuso, Norman Leppla, and Michael Donahoe and published by the Department of Entomology and Nematology is to provide Florida cotton growers a selected set of options for integrated pest management of insects and mites in cotton fields. It serves as a reference for cultural, mechanical, biological, and chemical control of arthropods. The guide includes links to additional UF/IFAS EDIS articles, as well as external sources of information on arthropod management. The guide also contains a searchable table of registered insecticides, herbicides, and fungicides for Florida cotton.­edis.ifas.ufl.edu/in1111


1998 ◽  
Vol 8 (2) ◽  
pp. 150-153
Author(s):  
J. Kabashima ◽  
T.D. Paine ◽  
R. Redak

Pesticide use in the landscape has been reduced through the implementation of integrated pest management (IPM) (Holmes and Davidson, 1984, Olkowski et al., 1978; Smith and Raupp, 1986). IPM emphasizes prevention, identifying pests and their symptoms, regular surveying for pests, determining action thresholds and guidelines, and using sound management methods. Monitoring techniques such as pheromone traps, degree-day models, and ELISA kits, in addition to traditional methods, have enabled pest managers to determine accurately when to apply IPM techniques. Examples of serious California landscape insect pests successfully controlled through IPM include the ash whitefly [Siphoninus phillyreae (Halliday)], the Nantucket pine tip moth [Rhyacionia frustrana (Comstock)], and the eucalyptus longhorned borer (Phoracantha semipunctata F.).


Author(s):  
K. L. Naga ◽  
A. R. Naqvi ◽  
B. L. Naga ◽  
H. L. Deshwal ◽  
L. Jhumar

Aim: Some genotypes of mothbean were screened for their comparative preference against jassids, whiteflies and thrips. Materials and Methods: The experiment was laid out during Kharif season in Randomized Block Design with three Replications. Ten genotypes (viz., RMO-225, RMO-40, RMO-423, RMO-435, RMO-257, RMO-25, RMO-141, RMO-20-36, RMO-04-01-28 and RMO-28-80) were screened against major sucking insect pests which were replicated thrice. Observations: The observations were recorded after two weeks of sowing at weekly intervals after two weeks of sowing. The pest populations were recorded on five randomly selected and tagged plants per plot in early hours when insect have minimum activity. Results: The data revealed that none of the genotypes ware found free from sucking insect pest attack. On the basis of peak population, the genotypes RMO-25 and RMO-141 were categorized as least preferred to jassids, whiteflies and thrips, whereas, RMO-435, RMO-225 and RMO-04-01-28 as highly preferred to jassids and whiteflies and RMO-435, RMO-225 and RMO-257 as highly resistant to thrips. Conclusion: It is well known that certain genotypes of crops are less attacked by a specific insect-pest than others because of natural resistance. In the integrated pest management programme, growing of varieties (RMO-25 and RMO-141) with less preference to sucking insect-pests is one of the most important tools without additional cost.


2021 ◽  
Vol 13 (2) ◽  
pp. 530-536
Author(s):  
Karuna Thakur ◽  
Neelam Joshi ◽  
Sudhendu Sharma

Cabbage aphid, Brevicornye brassicae (Linnaeus) is one of the major insect pests of cabbage. Chemical control is mostly used to manage this pest. The present investigation was conducted to evaluate an environmentally benign approach for the pest management through different entomopathogenic mycoformulations against nymphs of B. brassicae to identify effective mycoformulation. The effect of mycoformulations supplemented with different adjuvants against nymphs of B. Brassicae was also evaluated under laboratory conditions. The bioassay studies of fungal bioformulation against nymphs of B. brassicae recorded maximum cumulative per cent mortality (53.33%) in talc formulation of L. lecanii MTCC 956 and commercial L. Lecanii formulation @12g L-1 and these were at par with each other. Maximum percent reduction of nymphal population over control 54.66 and 51.33 per cent was recorded @12 g L-1in talc formulation of L. lecanii (MTCC 956) and commercial L. Lecanii formulation ten days after treatment respectively. Laboratory studies undertaken to evaluate talc formulation of L. lecanii MTCC 956 lecanii with and without adjuvants against the nymphs of B. brassicae recorded maximum percent increase in mortality over control (7.89%) in L. lecanii formulation + tween80@1%. Results of this study signified that L. lecanii formulation, when supplemented with adjuvants enhanced the growth of L. lecanii and increased mortality of nymphs of B. brassicae and could be used as a part of the integrated pest management program.


2000 ◽  
Vol 132 (3) ◽  
pp. 263-280 ◽  
Author(s):  
Michel Cusson ◽  
Subba Reddy Palli

AbstractIn the 1960s, the prediction that synthetic juvenile hormones (JHs) and their analogs would form the basis of a new generation of insecticides with enhanced target specificity greatly stimulated research on this hormone. Although JH-based insecticides were found to be effective against certain groups of insect pests, their shortcomings soon became apparent; however, current JH research provides new opportunities and ideas for the development of innovative integrated pest management (IPM) tools and strategies aimed at disrupting JH functions. Interfering with JH endocrinology requires that we either artificially increase JH titers at stages of development when titers are normally low or artificially reduce JH titers at stages of development when titers are normally high. Our discussion is organized around these two conceptual approaches and covers such areas as (i) the isolation and cloning of JH receptors; (ii) the characterization of polydnavirus and entomopoxvirus gene products responsible for the inhibition of host metamorphosis; (iii) the isolation and molecular cloning of allatostatins and the design of allatostatic pseudopeptides; (iv) the characterization of JH biosynthetic enzymes specific to the Lepidoptera; (v) the characterization of regulatory material originating from parasitic wasps of the genus Chelonus Panzer (Hymenoptera: Braconidae), which induce precocious metamorphosis in their hosts; (vi) a tree resistance mechanism involving anti-JH effects resulting in the failure of female insects to produce and lay eggs; and (vii) the cloning of JH esterase and epoxide hydrolase cDNAs and the production of recombinant baculoviruses that overexpress these JH-degradative enzymes.


Sign in / Sign up

Export Citation Format

Share Document