scholarly journals Cytotoxic effect of Myrtus communis, Aristolochia longa, and Calycotome spinosa on human erythrocyte cells

2021 ◽  
Vol 9 (2) ◽  
pp. 379-386
Author(s):  
Leila Gadouche ◽  
Azdinia Zidane ◽  
Khayra Zerrouki ◽  
Karima Azouni ◽  
Saadia Bouinoune

Introduction. Myrtus communis, Aristolochia longa, and Calycotome spinosa are medicinal plants frequently used in Algeria. Some plants can cause a fragility of the erythrocyte membrane and lead to hemolysis. Therefore, we aimed to study the cytotoxicity of aqueous extracts from the aerial part of these species against red blood cells. Study objects and methods. The hemolytic effect was determined spectrophotometrically by incubating an erythrocyte solution with different concentrations of the aqueous extracts (25, 50, 100, and 200 mg/mL) at 37°C during one hour. In addition, we performed phytochemical screening and measured the contents of polyphenols and flavonoids. Results and discussion. After one hour of incubation of human red blood cells with the aqueous extracts at different concentrations, the hemolysis percentage showed a significant leak of hemoglobin with A. longa (68.75 ± 6.11%; 200 mg/mL), the most toxic extract followed by C. spinosa (34.86 ± 5.06%; 200 mg/mL). In contrast, M. communis showed very low cytotoxicity (20.13 ± 3.11%; 200 mg/mL). Conclusion. These plants are sources of a wide range of bioactive compounds but their use in traditional medicine must be adapted to avoid any toxic effect.

2021 ◽  
Vol 169 ◽  
pp. 105105
Author(s):  
Marielba de los Ángeles Rodríguez Salazar ◽  
Glides Rafael Olivo Urbina ◽  
Vânia Maria Borges Cunha ◽  
Fernanda Wariss Figueiredo Bezerra ◽  
Michelle Nerissa Coelho Dias ◽  
...  

1990 ◽  
Vol 271 (1) ◽  
pp. 133-137 ◽  
Author(s):  
H Lochs ◽  
E L Morse ◽  
S A Adibi

A function of the abundant cytoplasmic peptidases in red blood cells could be hydrolysis of oligopeptides circulating in plasma. To investigate whether human red blood cells actively transport dipeptides for this purpose, these cells were incubated with 14C-labelled glycylproline, glycylsarcosine, glycine, proline and alanine. There was uptake of each dipeptide, as indicated by their recovery as dipeptides in the cell cytoplasm. However, after a brief time (1-2 min) uptake of dipeptides abruptly ceased, while that of amino acids continued. As a result, after 30 min red blood cell uptake of amino acids was 5-13-fold greater than that of any dipeptide. Investigation of intracellular contents after 1 min of incubation revealed different metabolism for different dipeptides. The composition of intracellular radioactivity was 19-71% as intact dipeptides, 0-20% as free amino acids and 8-77% as neither dipeptides nor constituent amino acids. Investigation of the mechanism of dipeptide uptake by red blood cells showed: (1) a lack of hydrolysis by the plasma membrane, (2) no non-specific binding to the plasma membrane, and (3) a lack of saturation over a wide range of concentrations (0.05-50 mM). The data suggest that the mechanism of uptake of trace amounts of dipeptides by human red blood cells is either by simple diffusion or by a carrier system which has a very weak affinity for dipeptides. Upon entry, depending on the molecular structure, dipeptides are either hydrolysed or transformed into new compounds. The red blood cell uptake, however, does not appear to play any appreciable role in clearance of dipeptides from the plasma in the human.


2021 ◽  
pp. 1-10
Author(s):  
Rui Zhong ◽  
Dingding Han ◽  
Xiaodong Wu ◽  
Hong Wang ◽  
Wanjing Li ◽  
...  

Background: The hypoxic environment stimulates the human body to increase the levels of hemoglobin (HGB) and hematocrit and the number of red blood cells. Such enhancements have individual differences, leading to a wide range of HGB in Tibetans’ whole blood (WB). Study Design: WB of male Tibetans was divided into 3 groups according to different HGB (i.e., A: >120 but ≤185 g/L, B: >185 but ≤210 g/L, and C: >210 g/L). Suspended red blood cells (SRBC) processed by collected WB and stored in standard conditions were examined aseptically on days 1, 14, 21, and 35 after storage. The routine biochemical indexes, deformability, cell morphology, and membrane proteins were tested. Results: Mean corpuscular volume, adenosine triphosphate, pH, and deformability were not different in group A vs. those in storage (p > 0.05). The increased rate of irreversible morphology of red blood cells was different among the 3 groups, but there was no difference in the percentage of red blood cells with an irreversible morphology after 35 days of storage. Group C performed better in terms of osmotic fragility and showed a lower rigid index than group A. Furthermore, SDS-PAGE revealed similar cross-linking degrees of cell membrane protein but the band 3 protein of group C seemed to experience weaker clustering than that of group A as detected by Western Blot analysis after 35 days of storage. Conclusions: There was no difference in deformability or morphological changes in the 3 groups over the 35 days of storage. High HGB levels of plateau SRBC did not accelerate the RBC change from a biconcave disc into a spherical shape and it did not cause a reduction in deformability during 35 days of preservation in bank conditions.


1990 ◽  
Vol 265 (27) ◽  
pp. 16035-16038 ◽  
Author(s):  
P Bütikofer ◽  
Z W Lin ◽  
D T Chiu ◽  
B Lubin ◽  
F A Kuypers

Sign in / Sign up

Export Citation Format

Share Document