scholarly journals DYNAMICS OF CYLINDRICAL TURBULENT SPOT IN A LONGITUDINAL SHEAR FLOWOF A PASSIVE STRATIFIED FLUID

2016 ◽  
pp. 102-107 ◽  
Author(s):  
Gennadiy Chernykh ◽  
Gennadiy Chernykh ◽  
Anzhella Fomina ◽  
Anzhella Fomina

A numerical model is constructed and dynamics of the cylindrical localized area of turbulent disturbances (turbulent spot) in a longitudinal horizontally homogeneous shear flow of a passive stratified fluid is studied. The results of calculations show a significant turbulent energy generation by shear flo . The problem of flow similarity with respect to the shear Froude number for sufficiently large values of this parameter is considered.

1995 ◽  
Vol 282 ◽  
pp. 163-186 ◽  
Author(s):  
S. Sarkar

Direct numerical simulation of turbulent homogeneous shear flow is performed in order to clarify compressibility effects on the turbulence growth in the flow. The two Mach numbers relevant to homogeneous shear flow are the turbulent Mach number Mt and the gradient Mach number Mg. Two series of simulations are performed where the initial values of Mg and Mt are increased separately. The growth rate of turbulent kinetic energy is observed to decrease in both series of simulations. This ‘stabilizing’ effect of compressibility on the turbulent energy growth rate is observed to be substantially larger in the DNS series where the initial value of Mg is changed. A systematic comparison of the different DNS cases shows that the compressibility effect of reduced turbulent energy growth rate is primarily due to the reduced level of turbulence production and not due to explicit dilatational effects. The reduced turbulence production is not a mean density effect since the mean density remains constant in compressible homogeneous shear flow. The stabilizing effect of compressibility on the turbulence growth is observed to increase with the gradient Mach number Mg in the homogeneous shear flow DNS. Estimates of Mg for the mixing layer and the boundary layer are obtained. These estimates show that the parameter Mg becomes much larger in the high-speed mixing layer relative to the high-speed boundary layer even though the mean flow Mach numbers are the same in the two flows. Therefore, the inhibition of turbulent energy production and consequent ‘stabilizing’ effect of compressibility on the turbulence (over and above that due to any mean density variation) is expected to be larger in the mixing layer relative to the boundary layer, in agreement with experimental observations.


2017 ◽  
Vol 827 ◽  
pp. 225-249 ◽  
Author(s):  
Atsushi Sekimoto ◽  
Javier Jiménez

Unstable equilibrium solutions in a homogeneous shear flow with sinuous (streamwise-shift-reflection and spanwise-shift-rotation) symmetry are numerically found in large-eddy simulations (LES) with no kinetic viscosity. The small-scale properties are determined by the mixing length scale $l_{S}$ used to define eddy viscosity, and the large-scale motion is induced by the mean shear at the integral scale, which is limited by the spanwise box dimension $L_{z}$. The fraction $R_{S}=L_{z}/l_{S}$, which plays the role of a Reynolds number, is used as a numerical continuation parameter. It is shown that equilibrium solutions appear by a saddle-node bifurcation as $R_{S}$ increases, and that the flow structures resemble those in plane Couette flow with the same sinuous symmetry. The vortical structures of both lower- and upper-branch solutions become spontaneously localised in the vertical direction. The lower-branch solution is an edge state at low $R_{S}$, and takes the form of a thin critical layer as $R_{S}$ increases, as in the asymptotic theory of generic shear flow at high Reynolds numbers. On the other hand, the upper-branch solutions are characterised by a tall velocity streak with multiscale multiple vortical structures. At the higher end of $R_{S}$, an incipient multiscale structure is found. The LES turbulence occasionally visits vertically localised states whose vortical structure resembles the present vertically localised LES equilibria.


2009 ◽  
Vol 629 ◽  
pp. 25-39 ◽  
Author(s):  
P. GUALTIERI ◽  
F. PICANO ◽  
C. M. CASCIOLA

Recently, clustering of inertial particles in turbulence has been thoroughly analysed for statistically homogeneous isotropic flows. Phenomenologically, spatial homogeneity of particle configurations is broken by the advection of a range of eddies determined by the Stokes relaxation time of the particles. This in turn results in a multi-scale distribution of local particle concentration and voids. Much less is known concerning anisotropic flows. Here, by addressing direct numerical simulations (DNS) of a statistically steady particle-laden homogeneous shear flow, we provide evidence that the mean shear preferentially orients particle patterns. By imprinting anisotropy on large-scale velocity fluctuations, the shear indirectly affects the geometry of the clusters. Quantitative evaluation is provided by a purposely designed tool, the angular distribution function (ADF) of particle pairs, which allows to address the anisotropy content of particle aggregates on a scale-by-scale basis. The data provide evidence that, depending on the Stokes relaxation time of the particles, anisotropic clustering may occur even in the range of scales in which the carrier phase velocity field is already recovering isotropy. The strength of the singularity in the anisotropic component of the ADF quantifies the level of fine-scale anisotropy, which may even reach values of more than 30% direction-dependent variation in the probability to find two closeby particles at viscous-scale separation.


Sign in / Sign up

Export Citation Format

Share Document