Calculation of dose rates in loss of coolant accident due to double ended rupture of the experimental tangential irradiation beam tube of MTR reactor.

2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Mahmoud aboelross ◽  
esmat amin ◽  
Magdy Zaky ◽  
Abdallah Abdelsalam ◽  
Wafaa Bahr
2017 ◽  
Vol 19 (2) ◽  
pp. 59 ◽  
Author(s):  
Anhar Riza Antariksawan ◽  
Surip Widodo ◽  
Hendro Tjahjono

A postulated loss of coolant accident (LOCA) shall be analyzed to assure the safety of a research reactor. The analysis of such accident could be performed using best estimate thermal-hydraulic codes, such as RELAP5. This study focuses on analysis of LOCA in TRIGA-2000 due to pipe and beam tube break. The objective is to understand the effect of break size and the actuating time of the emergency core cooling system (ECCS) on the accident consequences and to assess the safety of the reactor. The analysis is performed using RELAP/SCDAPSIM codes. Three different break size and actuating time were studied. The results confirmed that the larger break size, the faster coolant blow down. But, the siphon break holes could prevent the core from risk of dry out due to siphoning effect in case of pipe break. In case of beam tube rupture, the ECCS is able to delay the fuel temperature increased where the late actuation of the ECCS could delay longer. It could be concluded that the safety of the reactor is kept during LOCA throughout the duration time studied. However, to assure the integrity of the fuel for the long term, the cooling system after ECCS last should be considered.  Keywords: safety analysis, LOCA, TRIGA, RELAP5 STUDI PARAMETRIK LOCA DI TRIGA-2000 MENGGUNAKAN RELAP5/SCDAP. Kecelakaan kehilangan air pendingin (LOCA) harus dianalisis untuk menjamin keselamatan suatu reaktor riset. Analisis LOCA dapat dilakukan menggunakan perhitungan best-estimate seperti RELAP5. Penelitian ini menekankan pada analisis LOCA di TRIGA-2000 akibat pecahnya pipa dan tabung berkas. Tujuan penelitian adalah memahami efek ukuran kebocoran dan waktu aktuasi sistem pendingin teras darurat (ECCS) pada sekuensi kejadian dan mengkaji keselamatan reaktor. Analisis dilakukan menggunakan program perhitungan RELAP/SCDAPSIM. Tiga ukuran kebocoran dan waktu aktuasi ECCS berbeda dipilih sebagai parameter dalam studi ini.  Hasil perhitungan mengonfirmasi bahwa semakin besar ukuran kebocoran, semakin cepat pengosongan tangki reaktor. Lubang siphon breaker dapat mencegah air terkuras dalam hal kebocoran pada pipa. Sedang dalam hal kebocoran pada beam tube, ECCS mampu memperlambat kenaikan temperatur bahan bakar. Dari studi ini dapat disimpulkan bahwa keselamatan reaktor dapat terjaga pada kejadian LOCA, namun pendinginan jangka panjang perlu dipertimbangkan untuk menjaga integritas bahan bakar.Kata kunci: analisis keselamatan, LOCA, TRIGA, RELAP5


2021 ◽  
Vol 13 (3) ◽  
pp. 1442
Author(s):  
Sanggil Park ◽  
Jaeyoung Lee ◽  
Min Bum Park

The temperature of zirconium alloy cladding on the postulated spent nuclear fuel pool complete loss of coolant accident is abruptly increased at a certain time and the cladding is almost fully oxidized to weak ZrO2 in the air. This abrupt temperature escalation phenomenon induced by the air-oxidation breakaway is called a zirconium fire. Although an air-oxidation breakaway kinetic model correlated between time and temperature has been implemented in the MELCOR code, it is likely to bring about unexpected large errors because of many limitations of model derivation. This study suggests an improved time–temperature correlated kinetic model using the Johnson–Mehl equation. It is based on that the air-oxidation breakaway is initiated by the phase transformation from the tetragonal to monoclinic ZrO2 at the oxide–metal interface in the cladding. This new model equation is also evaluated with the Zry-4 air-oxidation literature data. This equation resulted in the almost similar air-oxidation breakaway timing to the actual experimental data at 800 °C. However, at 1000 °C, it showed an error of about 8 min. This could be inferred from the influence of the ZrN phase change due to the nitrogen existing in air.


2021 ◽  
Vol 134 ◽  
pp. 103648
Author(s):  
Katarzyna Skolik ◽  
Chris Allison ◽  
Judith Hohorst ◽  
Mateusz Malicki ◽  
Marina Perez-Ferragut ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document