scholarly journals RESPONSE OF SOME MAIZE VARIETIES (Zea mays L.) TO BORON FOLIAR APPLICATION UNDER SIWA OASIS CONDITIONS

2019 ◽  
Vol 27 (1) ◽  
pp. 281-287
Author(s):  
H. Hassan ◽  
M. Hassaan ◽  
M. Attia
Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 182
Author(s):  
Jan Bocianowski ◽  
Kamila Nowosad ◽  
Barbara Wróbel ◽  
Piotr Szulc

Microsatellite or simple sequence repeat (SSR) markers have wide applicability for genetic analysis in crop plant improvement strategies. Marker-assisted selection is an important tool for plant breeders to increase the efficiency of a breeding process, especially for multigenic traits, highly influenced by the environment. In this paper, the relationships between SSR markers and 26 quantitative traits of hybrid maize varieties (Zea mays L.) were analyzed. Association analyses were performed based on 30 SSR primers in a set of thirteen hybrid maize varieties. A total of 112 SSR markers were detected in these genotypes. The number of alleles per locus ranged from 1 to 17, with the average number of alleles per locus equal to 3.7. The number of molecular markers associated with observed traits ranged from 1 (for the number of kernels in row, ears weight and fresh weight of one plant) to 14 (for damage of maize caused by P. nubilalis) in 2016 as well as from 1 (for soil plant analysis development—SPAD, the number of grains in ear and fresh weight of one plant) to 12 (for carotenoids content) in 2017. The sum of statistically significant associations between SSR markers and at least one trait was equal to one hundred sixty in 2016 as well as one hundred twenty-five in 2017. Marker trait associations (MTAs) were found on the basis of regression analysis. The proportion of the total phenotypic variances of individual traits explained by the marker ranged from 24.4% to 77.7% in the first year of study and from 24.3% to 77.9% in 2017. Twenty-two SSR markers performed a significant effect on at least one tested trait in both years of experiment. The three markers (phi021/4, phi036/3, and phi061/2) can be a good tool in marker-assisted selection because they allow simultaneous selection for multiple traits in both years of study, such as the number of kernels in row and the number of grains in ear (phi021/4), the number of plant after germination, the number of plants before harvest, and the number of ears (phi036/3), as well as moisture of grain and length of ears (phi061/2).


2019 ◽  
Author(s):  
Timothy Omara

The moisture content and total aflatoxin (AF) content of 27 samples of freshly harvested white maize (Zea mays L.) from Mubende (n = 3), Ibanda (n = 3), Jinja (n = 3), Mayuge (n = 3) , Buikwe (n = 3), Hoima (n = 3), Mpigi (n = 3), Masindi (n = 3) and Bugiri (n = 3) districts of Uganda representing the agroecological zones: Lake Victoria crescent, Western Highlands, South East and Lake Albert Crescent were determined in the second season harvest of January 2019 to March 2019. Moisture content ranged from 12.9 to 18.8% (mean moisture content varied from 13.9±0.35-17.2±1.55%) with the highest moisture recorded in maize from Ibanda. The highest mean AF contamination of 11.0±3.01 μg/kg was recorded in maize from Hoima while the lowest AF content of 3.8±1.30 μg/kg was recorded in maize from Mpigi. Despite the fact that all the samples had detectable aflatoxins, none of the maize samples had aflatoxin greater than WHO regulatory limit of 20 μg/kg. White maize in Uganda are precontaminated by aflatoxins prior to harvest. Whereas the spectre of aflatoxigenic contamination of foods remains a ticklish challenge to address, strategic adaptation and deployment of appropriate interventions can help secure a safe harvest. Farmers should plant maize varieties with established maturity periods to ensure timely harvesting. Further research should assess the presence of other mycotoxins as zearalenone, sterigmatocystin, ochratoxin A, citrinin, vomitoxin and diacetoxyscirpenol that may co-occur with aflatoxins in freshly harvested maize.


2021 ◽  
Vol 13 (1) ◽  
pp. 278-286
Author(s):  
Augustine R. ◽  
D. Kalyanasundaram

Agronomic biofortification increases the concentration of target mineral in edible portions of crops by the use of mineral fertilizers to increase dietary intake of target minerals. Among these iron and zinc deficiencies in human nutrition are noticed in countries where maize is the staple food. The objective of this study was to evaluate agronomic biofortification performance in association with Integrated Nutrient Management in maize (Zea mays .L). The study was conducted under field conditions in Chinnakandiankuppam village, Vriddhachalam Taluk, in the North-eastern region of Tamil Nadu state, India of Kharif 2020 season. Two hybrids in main plots (M1 – Non biofortified and M2 – Biofortified) were combined with six treatments in sub-plots (100 % RDF through NPK (S1), 100 % RDF through FYM (S2), 50% RDF through NPK + 50% through FYM (S3) as soil application, S1+ Zinc + Iron (S4), S2 +Zinc + Iron (S5) and S3 + Zinc + Iron (S6) as foliar application with evaluations were carried out in wet season period of the year. Application of 50 percent RDF through NPK + 50 percent RDF through FYM with Fe, Zn, foliar applications (S6) was the most efficient agronomic biofortification practice for growth attributes, yield and yield attributes, nutrient uptake, and quality parameters for the maize cropping system under the irrigated condition of the northeastern zone of Tamilnadu State, India. 


2015 ◽  
Vol 3 (3) ◽  
pp. 69-75 ◽  
Author(s):  
Dr. Ehsanullah ◽  
Azeem Tariq ◽  
Mahmood A. Randhawa ◽  
Shakeel A. Anjum ◽  
Mubashar Nadeem ◽  
...  

2020 ◽  
Author(s):  
Marlina

The study, entitled the effect of the administration of Palm Oil Long Palm (AJKS) to the growth and production of two corn varieties inpeatlands, was carried out from October 2017 to March 2018 in trench 3 in Tembilahan Hulu Village, Tembilahan Hulu District, Indragiri Hilir Regency,soil analysis and AJKS conducted at the Bogor Institute of Agriculture Laboratory. The purpose of this study was to determine the effect of AJKSadministration on the growth and production of two maize varieties (Zea mays L) on peatlands, and to determine whether there was an interactionbetween the dosage of AJKS and corn varieties on peat soil ameliorating AJKS. The design used was factorial Randomized Block Design (RBD) using 2factors with three replications. The first factor is the dose of AJKS administration consisting of 4 levels, namely: A0: 0 kg / ha, A1: 500 kg / ha, A2: 1000kg / ha, A3: 1500 kg / ha. The second factor is corn varieties with 2 levels, namely: V1: Pioneer Varieties and V2: Varieties N35. Of the two factors aboveobtained 8 treatment combinations. Based on the results of research that has been done, that there is no real interaction and influence between thetreatment of giving AJKS with varieties to all observed parameters. Giving AJKS 1500 kg / ha gives the highest yields on all parameters observed exceptfor the number of cobs, Pioneer variety is the variety that responds most to AJKS administration.


Sign in / Sign up

Export Citation Format

Share Document