scholarly journals Maize Growth and Yield Response to Different Rates of Humic Acid and Zinc

Author(s):  
Mahmud A. A.Rahouma
Agricultura ◽  
2015 ◽  
Vol 12 (1-2) ◽  
pp. 33-40 ◽  
Author(s):  
Franc Bavec ◽  
Martina Bavec ◽  
Silva Grobelnik Mlakar ◽  
Milojka Fekonja

Abstract Sweet maize is an underutilized vegetable in European temperate areas, and its consumption is increasing. For better understanding of cultivation practices, this pot experiment aimed to determine the eff­ects of diff­erent water regimes and nitrogen (N) rates calculated from N target values. N rates of 0 (control), 0.6 and 2 g N pot-1 were applied as organic by-products pumpkin cake and pig manure digestate, and mineral fertilizers CAN 27 and ENTEC®26. Treatments of water supply were based on measured soil matric potentials of 2.8 pF (drought stress), 2.6 pF (optimal water) and 2.4 pF (overwatered). In comparison to mineral fertilizers, pumpkin cake proved to be equal in eff­ectiveness in plant height (155.8 cm), cob (85.8 g), green (124.9 g) and leaf mass per plant (44.2 g), or even better in root (72.3 g) and broom mass per plant (3.0 g). Yield parameters, cob mass (70.1 g), its length (6.3 cm) and diameter (2.0 cm), as well as the residual mineral N (59 mg N kg-1) significantly increased at the highest N rate. Significantly lower values of the evaluated morphological parameters and photosynthetic rates (at brooming and harvesting) were associated with drought stress. The matric tension of 2.6 pF was established as an appropriate water regime for sweet maize growth.


2016 ◽  
Vol 30 (6) ◽  
pp. 632-640 ◽  
Author(s):  
Paul B. Francis ◽  
Larry D. Earnest ◽  
Kelly Bryant

2019 ◽  
Vol 4 (2) ◽  
pp. 76
Author(s):  
Putri Wulandari ◽  
Endang Sulistyaningsih ◽  
Suci Handayani ◽  
Benito Heru Purwanto

The main constraint in the extensification of maize on the dry land of acid soil is the low availability of P in soil. This study aimed to determine the effect and the optimal dose of humic acid on the growth and yield of maize on acid soil. This research was conducted from February to May 2017 at Tri Dharma Field Laboratory, Faculty of Agriculture, Gadjah Mada University. Acid soil with low P availability used was from sub-district Cigudeg and Jasinga, West Java. The research was arranged in Randomized Complete Block Design (RCBD) with 2 factors. The first factor was maize cultivar, namely Bisi 2 and Pioneer 35. The second factor was the rate of humic acid and NPK fertilizer, consisting of 0 kg.ha-1 (without) NPK and 0% (without) humic acid, NPK + 0% (without) humic acid, NPK + 5% humic acid, NPK + 10% humic acid, and NPK + 15% humic acid. NPK fertilizer applied was NPK 16:16:16 at a dose of 350 kg.ha-1. The results showed that humic acid application on acid soil increased C-humic content in the soil, soil P availability, total dry weight of the plant, and kernel dry weight at harvest (15 weeks after planting). The increase in soil P availability did not improve the plant growth but increased the accumulation of plant biomass.  The application of humic acid at 15% (52.5 kg.ha-1) combined with NPK fertilizer on acid soil significantly increased total dry weight of plant and kernel dry weight up to 13.14% and 21.81%, respectively, thus, it is recommended for maize cultivation on acid soil. 


2020 ◽  
pp. 1-12
Author(s):  
E. K. Al-Fahdawe ◽  
A. A. Al-Sumaidaie ◽  
Y. K. Al-Hadithy

A pots experiment was conducted at the Department of Biology/College of Education for Girls/University of Anbar during Autumn season of 2018-2019 to study the effect of the salinity irrigation water and spray by humic acid in some of morphological, physiological, growth and yield traits of wheat cv. IPa. The experiment was randomized complete block design (RCBD) with three replications. The first factor was assigned for irrigation by saline water at four level (S0, S1, S2 and S3), while the second factor was the foliar spraying of humic acid in three level (0.0, 1.0 and 1.5 g l-1). The results showed that there was significant reduction in plant height, vegetative dry weight, biological yield and chlorophyll leaves content when the plants were irrigated by saline water approached to 41.09 cm, 0.747 g, 0.849 g plant-1 and 38.67 SPAD, respectively at salinity level of 8.3 ds m-1 compared with the plants which irrigated by fresh water. The total carbohydrates were significantly decreased at the treatment of 8.3 ds m-1 reached 18.71 mg g-1. Spray levels humic acid achieved a significant increase in plant height, dry weight of the vegetative part, biological yield and chlorophyll leaves content sprayed at 1.0 and 1.5 g l-1 compared to no sprayed. Nitrogen concentration was significantly increased, while both phosphorus and potassium were decreased in the vegetative parts of wheat as the salinity of irrigation water increased. However, the increase of humic acid levels led to significant increasing in nitrogen, phosphorus and potassium concentration.


Crop Science ◽  
1994 ◽  
Vol 34 (5) ◽  
pp. 1400-1403 ◽  
Author(s):  
L. M. Dwyer ◽  
D. W. Stewart ◽  
L. Evenson ◽  
B. L. Ma

Crop Science ◽  
1985 ◽  
Vol 25 (6) ◽  
pp. 975-981 ◽  
Author(s):  
N. C. Bhattacharya ◽  
P. K. Biswas ◽  
Sheila Battacharya ◽  
Nasser Sionit ◽  
B. R. Strain

2003 ◽  
Vol 54 (10) ◽  
pp. 957 ◽  
Author(s):  
A. G. Condon ◽  
F. Giunta

Transient waterlogging during winter and spring reduces wheat yield in many parts of southern Australia. Yield reductions from waterlogging are associated with reduced production and survival of tillers, fewer and smaller fertile tillers, and smaller grain size. Under favourable conditions, wheats that have the tiller-inhibition ('tin') gene produce a lower total number of tillers but a higher proportion of large, productive tillers and larger grains than wheats without this gene. These characteristics of restricted-tillering wheat may contribute to improved yield under transient waterlogging. We compared the growth and yield of the commercial variety Bodallin and 2 Bodallin backcross derivatives containing the 'tin' gene in 8 field trials grown on shallow, duplex soils in 1995 and 1996 at 3 locations in the south-west of Western Australia. Trials were sown at standard (1995) and standard and high (1996) seeding rates. Trial-mean yield ranged from 0.5 to 4.7 t/ha, depending on the occurrence and severity of waterlogging before anthesis and of soil water deficit before and after anthesis. Grain yield of the restricted-tillering (RT) lines averaged only c. 80% of Bodallin. At all sites and seeding rates the RT lines had fewer spikes per m2 (45% fewer, on average) but averaged 44% more grains per spike. In 1996 only, grain weight of the RT lines was 6% greater than of Bodallin. There was no evidence that the relative yield of the RT lines was greater at waterlogged sites than at other sites. Waterlogging reduced the number of fertile spikes of RT lines and of Bodallin to the same relative extent and differences in grains per spike and grain size had little effect on relative yields. Even though harvest index of the RT lines was slightly elevated in some environments, biomass production of the RT lines was low in all environments. We conclude that wheats with the 'tin' gene are unlikely to have a yield advantage under transient waterlogging unless their biomass production can match that of more freely tillering wheats.


Sign in / Sign up

Export Citation Format

Share Document