scholarly journals Database for Optimal Selection of Cutting Conditions, Forces and Power Consumption in Machining Processes (Dept.M)

2020 ◽  
Vol 35 (1) ◽  
pp. 103-113
Author(s):  
A. El Bahloul ◽  
I. Eleva ◽  
Fatma Elerian ◽  
E. Gadelmawla
Author(s):  
Mohamed Aly ◽  
Karim Hamza ◽  
Mohammed Tauhiduzzaman ◽  
Mouhab Meshreki ◽  
Ashraf O. Nassef ◽  
...  

Optimum selection of cutting conditions in high-speed and ultra-precision machining processes often poses a challenging task due to several reasons; such as the need for costly experimental setup and the limitation on the number of experiments that can be performed before tool degradation starts becoming a source of noise in the readings. Moreover, oftentimes there are several objectives to consider, some of which may be conflicting, while others may be somewhat correlated. Pareto-optimality analysis is needed for conflicting objectives; however the existence of several objectives (high-dimension Pareto space) makes the generation and interpretation of Pareto solutions difficult. The approach adopted in this paper is a modified multi-objective efficient global optimization (m-EGO). In m-EGO, sample data points from experiments are used to construct Kriging meta-models, which act as predictors for the performance objectives. Evolutionary multi-objective optimization is then conducted to spread a population of new candidate experiments towards the zones of search space that are predicted by the Kriging models to have favorable performance, as well as zones that are under-explored. New experiments are then used to update the Kriging models, and the process is repeated until termination criteria are met. Handling a large number of objectives is improved via a special selection operator based on principle component analysis (PCA) within the evolutionary optimization. PCA is used to automatically detect correlations among objectives and perform the selection within a reduced space in order to achieve a better distribution of experimental sample points on the Pareto frontier. Case studies show favorable results in ultra-precision diamond turning of Aluminum alloy as well as high-speed drilling of woven composites.


2012 ◽  
Vol 45 (4) ◽  
pp. 41 ◽  
Author(s):  
M. K. Saha ◽  
Santanu Das ◽  
A. Bandyopadhyay ◽  
S. Bandyopadhyay

2012 ◽  
Vol 45 (4) ◽  
pp. 41
Author(s):  
M. K. Saha ◽  
Santanu Das ◽  
A. Bandyopadhyay ◽  
S. Bandyopadhyay

2021 ◽  
Vol 13 (6) ◽  
pp. 3571
Author(s):  
Bogusz Wiśnicki ◽  
Dorota Dybkowska-Stefek ◽  
Justyna Relisko-Rybak ◽  
Łukasz Kolanda

The paper responds to research problems related to the implementation of large-scale investment projects in waterways in Europe. As part of design and construction works, it is necessary to indicate river ports that play a major role within the European transport network as intermodal nodes. This entails a number of challenges, the cardinal one being the optimal selection of port locations, taking into account the new transport, economic, and geopolitical situation that will be brought about by modernized waterways. The aim of the paper was to present an original methodology for determining port locations for modernized waterways based on non-cost criteria, as an extended multicriteria decision-making method (MCDM) and employing GIS (Geographic Information System)-based tools for spatial analysis. The methodology was designed to be applicable to the varying conditions of a river’s hydroengineering structures (free-flowing river, canalized river, and canals) and adjustable to the requirements posed by intermodal supply chains. The method was applied to study the Odra River Waterway, which allowed the formulation of recommendations regarding the application of the method in the case of different river sections at every stage of the research process.


Sign in / Sign up

Export Citation Format

Share Document