Thermal and Hydraulic Analysis for Air Flow Across Flat Tubes Air Cooled Condensers. (Dept. M)

2021 ◽  
Vol 32 (4) ◽  
pp. 30-42
Author(s):  
M. Awad ◽  
H. Mostafa ◽  
A. El-Booz ◽  
A. El-Ghonemy
Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1175
Author(s):  
Tereza Kroulíková ◽  
Tereza Kůdelová ◽  
Erik Bartuli ◽  
Jan Vančura ◽  
Ilya Astrouski

A novel heat exchanger for automotive applications developed by the Heat Transfer and Fluid Flow Laboratory at the Brno University of Technology, Czech Republic, is compared with a conventional commercially available metal radiator. The heat transfer surface of this heat exchanger is composed of polymeric hollow fibers made from polyamide 612 by DuPont (Zytel LC6159). The cross-section of the polymeric radiator is identical to the aluminum radiator (louvered fins on flat tubes) in a Skoda Octavia and measures 720 × 480 mm. The goal of the study is to compare the functionality and performance parameters of both radiators based on the results of tests in a calibrated air wind tunnel. During testing, both heat exchangers were tested in conventional conditions used for car radiators with different air flow and coolant (50% ethylene glycol) rates. The polymeric hollow fiber heat exchanger demonstrated about 20% higher thermal performance for the same air flow. The efficiency of the polymeric radiator was in the range 80–93% and the efficiency of the aluminum radiator was in the range 64–84%. The polymeric radiator is 30% lighter than its conventional metal competitor. Both tested radiators had very similar pressure loss on the liquid side, but the polymeric radiator featured higher air pressure loss.


Author(s):  
Bo Zhao ◽  
Xiaoxv Wang ◽  
Yongshao Xu ◽  
Bingzheng Liu ◽  
Shengxian Cao ◽  
...  

AbstractOne of the largest problems with most current thermal power plants is the cooling efficiency. This paper aims to massively reduce fuel consumption and heat wasted in thermal power plants and hence CO2 emissions by resolving fouling issues associated with air-cooled condensers. In order to reduce the dust fouling deposition in the air-cooled condensers, the finned flat tubes were coated with nickel−phosphorus and nickel−phosphorus−polytetrafluoroethylene (Ni–P-PTFE) by an electroless coating technology. The anti-fouling performance of the coated tubes was investigated using the field operation parameters of air-cooled condensers, and the influence of the surface energies of the coatings on the dust adhesion was also investigated. The results demonstrated that the Ni–P coated finned tubes performed best, which reduced fouling resistance by 83.3% compared with the untreated finned tubes. The Ni–P coatings have potential applications in thermal power plants for reducing heat exchanger fouling and hence significantly decreasing waste heat and CO2 emissions. Graphic abstract


1974 ◽  
Vol 30 (1) ◽  
pp. 32-41 ◽  
Author(s):  
E. J. Butler ◽  
B. J. Egan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document