Treatment of Oily Wastewater Using Advanced Solar Photo-Catalytic Oxidation Process Using Titanium Dioxide Doped Nano Fibers

2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Ebrahiem Ebrahiem ◽  
Hassan A.Farag ◽  
Montaser Ghaly ◽  
Riham Mohamed
2011 ◽  
Vol 233-235 ◽  
pp. 1684-1689 ◽  
Author(s):  
Heng Shen Xie ◽  
Zhi Min Zong ◽  
Qing Wei ◽  
Pei Zhi Zhao ◽  
Jian Jun Zhao ◽  
...  

Shenfu bituminous coal (SFBC) and Xilinhaote lignite (XL) were subject to photo-catalytic oxidation with hydrogen peroxide over titanium dioxide. The reaction mixtures were extracted with acetone exhaustively. The extracts were analyzed with FTIR and GC/MS. The results show that coals be oxidized selectively and degraded partially. Compared with the bituminite coal, the oxidation effect of the lignite coal with active hydrogens is more obvious. The alkyl side chains of the macromolecules, particularly, chains of methyl, methylene and aromatic, are the most vulnerable in relation to other compounds in coals. Moreover, the increasing of straight-chain alkanes and the decreasing of condensed nucleus in SFBC and XL through oxidation suggest that the oxidation is an effective method of coal utilization with no difficultly, also be friendly towards the environment after treated as well as in the process of the treatment.


2013 ◽  
Vol 777 ◽  
pp. 101-105
Author(s):  
Jie Zhang ◽  
Wei Qian Pan ◽  
Tong Zheng ◽  
Peng Wang

To achieve efficient removal of phenolic pollutants in water, the catalyst of Fe (III)-Cu (II)/γ-Al2O3 was prepared. In the presence of Fe (III)-Cu (II)/γ-Al2O3, microwave-induced hydrogen peroxide (H2O2) catalytic oxidation process was conducted for the treatment of synthetic wastewater containing PNP, a representative of phenolic pollutants. Effectiveness of the process and factors influencing PNP removal were investigated and results showed microwave-induced H2O2-Fe (III)-Cu (II)/γ-Al2O3 process could achieve 99.41% PNP removal percentage, corresponding to 77.9% TOC removal in a given condition. The process remained effective in the 2-8 pH range with high reusability of Fe (III)-Cu (II)/γ-Al2O3 catalyst. The kinetics study showed microwave-induced H2O2-Fe (III)-Cu (II)/γ-Al2O3 process could be divided into microwave induction stage and catalytic oxidation stage, both of which fitted first-order kinetics, with reaction rate constants of 0.0453 min-1 and 4.7552 min-1 respectively.


2021 ◽  
Vol 903 ◽  
pp. 143-148
Author(s):  
Svetlana Cornaja ◽  
Svetlana Zhizhkuna ◽  
Jevgenija Vladiko

Supported 3wt%Pd/α-Al₂O₃ catalyst was tested in selective oxidation of 1,2-propanediol by molecular oxygen. It was found that the catalyst is active in an alkaline water solution. Lactic acid was obtained as the main product of the reaction. Influence of different reaction conditions on 1,2-PDO conversion and oxidation process selectivity was studied. Partial kinetic orders of the reaction with respect to 1,2-propanediol, c0(NaOH), p(O2), n(1,2-PDO)/n(Pd)) were determined and an experimental kinetic model of the catalytic oxidation reaction was obtained. Activation energy of the process was calculated and was found to be about 53 ± 5 kJ/mol.


2019 ◽  
Vol 7 (1) ◽  
pp. 102889 ◽  
Author(s):  
Xiyang Liu ◽  
Fei Huang ◽  
Yide He ◽  
Yang Yu ◽  
Yong Lv ◽  
...  

2002 ◽  
Vol 3 (9) ◽  
pp. 435-440 ◽  
Author(s):  
Alexandre D. Silva ◽  
Maria L. Patitucci ◽  
Humberto R. Bizzo ◽  
Eliane D'Elia ◽  
O.A.C. Antunes

Sign in / Sign up

Export Citation Format

Share Document