Cerium sulfate preparation from Egyptian monazite's rare earth cake for its application as corrosion inhibitor of aluminum alloy AA6061

2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
walid Abdellah ◽  
Ahmed Abdelkareem ◽  
Amr shaltot ◽  
Omneya El-Husaini
Author(s):  
A.M. Semiletov ◽  
◽  
Yu.B. Makarychev ◽  
A.A. Chirkunov ◽  
L.P. Kazansky ◽  
...  

The application of mixed corrosion inhibitor (CI), which is an equimolar composition of oleoyl sarcosinate (SOS) and sodium flufenamate (SFF), for protection of D16 aluminum alloy from atmospheric corrosion has been studied. The polarization measurements used to assess the effectiveness of preliminary passivation of the alloy with solutions of SOS, SFF and their composition showed significant advantages of mixed CI. The XPS method was used to study features of CI adsorption on the surface of D16 alloy. It has been established that upon adsorption of SOS and SFF separately a monolayer is formed, firmly bonded to the alloy surface, thickness of which is not exceeding 2.6—3.2 nm. After the joint adsorption of these CI, the layer thickness reaches 12—20 nm. The composition of this layer includes a considerable amount of Al3+ ions (~20%) related to their compounds with SFF and SOS, as well as to aluminum hydroxides. A possible mechanism for the formation of such a protective layer is proposed. The results of corrosion tests in a humid atmosphere with daily water condensation on samples of D16 alloy confirmed the high protective ability of the mixed CI film.


2021 ◽  
Vol 57 (7) ◽  
pp. 1344-1351
Author(s):  
A. M. Semiletov ◽  
Yu. B. Makarychev ◽  
A. A. Chirkunov ◽  
L. P. Kazansky ◽  
Yu. I. Kuznetsov

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4244 ◽  
Author(s):  
Wanwu Ding ◽  
Xiaoxiong Liu ◽  
Xiaoyan Zhao ◽  
Taili Chen ◽  
Haixia Zhang ◽  
...  

The hot deformation behaviors of the new 6063 aluminum alloy modified by rare earth Y and Al-Ti-B master alloy were studied through isothermal hot compression experiments on the Gleeble-3800 thermal simulator. By characterizing the flow curves, constitutive models, hot processing maps, and microstructures, we can see from the true stress–true strain curves that the flow stress decreases with the increase of deformation temperature and the decrease of strain rate. Through the calculation of the constitutive equation, we derived that the activation energy of the new composite modified 6063 aluminum alloy is 224.570 KJ/mol. we roughly obtained its excellent hot processing range of temperatures between 470–540 °C and the strain rates of 0.01–0.1 s−1. The verification of the deformed microstructure shows that with the decrease of lnZ, the grain boundary changes from a low-angle one to a high-angle one and the dynamic recrystallization is dominated by geometric dynamic recrystallization and continuous dynamic recrystallization. Analysis of typical samples at 480 °C/0.01 s−1 shows that the addition of rare earth Y mainly helps form Al3Y5 and AlFeSiY phases, thus making the alloy have the performance of high-temperature recrystallization, which is beneficial to the hot workability of the alloy.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Juan Du ◽  
Zi-ming Wei ◽  
Xu-dong Yang ◽  
Qing-mao Liu ◽  
Hai-peng Song ◽  
...  

In this paper, a novel method combining electrochemical impedance spectroscopy (EIS) and phase shift was used to systematically study the effect of corrosion inhibitor (sodium succinate, sodium dodecyl benzene sulfonate, and new corrosion inhibitor, namely, bis [2-amino-3-(dodecyl dimethyl quaternary ammonium) propyl]-propylamine dichloro) on crack initiation and propagation of aluminum alloy during the slow strain rate tensile process. Using a variety of characterization methods to verify the feasibility of using the new method for in-situ prediction, Kramers–Kronig transformations have been used to validate the experimental data obtained with the EIS measurements. The corrosion inhibition mechanism of these three kinds of inhibitors in the SSRT process was analyzed.


2011 ◽  
Vol 65 (3) ◽  
pp. 221-224 ◽  
Author(s):  
B. Nami ◽  
H. Razavi ◽  
S.M. Miresmaeili ◽  
Sh. Mirdamadi ◽  
S.G. Shabestari

2014 ◽  
Vol 202 (2) ◽  
pp. 206-216 ◽  
Author(s):  
Saviour A. Umoren ◽  
Edu I. Inam ◽  
Aniekan A. Udoidiong ◽  
Ime B. Obot ◽  
Ubong M. Eduok ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document