scholarly journals Bioactive Secondary Metabolites from Endophytic Aspergillus terreus AH1 Isolated from Ipomoea carnea Growing in Egypt

2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Ahmed Hamed ◽  
Heba Elkhouly ◽  
Nagwa Sidkey ◽  
Asmaa El hosainy ◽  
Mosad Ghareeb
2018 ◽  
Vol 80 ◽  
pp. 525-530 ◽  
Author(s):  
Mengting Liu ◽  
Weiguang Sun ◽  
Jianping Wang ◽  
Yan He ◽  
Jinwen Zhang ◽  
...  

Planta Medica ◽  
2013 ◽  
Vol 79 (10) ◽  
Author(s):  
LG Malak ◽  
DW Bishay ◽  
AM Abdel-baky ◽  
AM Moharram ◽  
SJ Cutler ◽  
...  

Planta Medica ◽  
2015 ◽  
Vol 81 (11) ◽  
Author(s):  
JJ Araya ◽  
M Chavarría ◽  
A Pinto-Tomás ◽  
C Murillo ◽  
L Uribe ◽  
...  

2020 ◽  
Vol 27 (11) ◽  
pp. 1836-1854 ◽  
Author(s):  
Elena Ancheeva ◽  
Georgios Daletos ◽  
Peter Proksch

Background: Endophytes represent a complex community of microorganisms colonizing asymptomatically internal tissues of higher plants. Several reports have shown that endophytes enhance the fitness of their host plants by direct production of bioactive secondary metabolites, which are involved in protecting the host against herbivores and pathogenic microbes. In addition, it is increasingly apparent that endophytes are able to biosynthesize medicinally important “phytochemicals”, originally believed to be produced only by their host plants. Objective: The present review provides an overview of secondary metabolites from endophytic fungi with pronounced biological activities covering the literature between 2010 and 2017. Special focus is given on studies aiming at exploration of the mode of action of these metabolites towards the discovery of leads from endophytic fungi. Moreover, this review critically evaluates the potential of endophytic fungi as alternative sources of bioactive “plant metabolites”. Results: Over the past few years, several promising lead structures from endophytic fungi have been described in the literature. In this review, 65 metabolites are outlined with pronounced biological activities, primarily as antimicrobial and cytotoxic agents. Some of these metabolites have shown to be highly selective or to possess novel mechanisms of action, which hold great promises as potential drug candidates. Conclusion: Endophytes represent an inexhaustible reservoir of pharmacologically important compounds. Moreover, endophytic fungi could be exploited for the sustainable production of bioactive “plant metabolites” in the future. Towards this aim, further insights into the dynamic endophyte - host plant interactions and origin of endophytic fungal genes would be of utmost importance.


3 Biotech ◽  
2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Vivek Sharma ◽  
Randhir Kaur ◽  
Richa Salwan

Sign in / Sign up

Export Citation Format

Share Document