scholarly journals Development of one-section microchannels cooling system for high-concentration photovoltaic cells

2019 ◽  
Vol 164 (0) ◽  
pp. 250-270
Author(s):  
Mohammed , Ibrahim ◽  
Hala , Abdel-Hameeda ◽  
Hosny Abou-Ziyana,
Author(s):  
Z. Xu ◽  
C. Kleinstreuer

High concentration photovoltaic devices require effective heat rejection to keep the solar cells within a suitable temperature range and to achieve acceptable system efficiencies. Various techniques have been developed to achieve these goals. For example, nanofluids as coolants have remarkable heat transfer characteristics with broad applications; but, little is known of its performance for concentration photovoltaic cooling. Generally, a cooling system should be designed to keep the system within a tolerable temperature range, to minimize energy waste, and to maximize system efficiency. In this paper, the thermal performance of an Al2O3-water cooling system for densely packed photovoltaic cells under high concentration has been computationally investigated. The model features a representative 2D cooling channel with photovoltaic cells, subject to heat conduction and turbulent nanofluid convection. Considering a semi-empirical nanofluid model for the thermal conductivity, the influence of different system design and operational parameters, including required pumping power, on cooling performance and improved system efficiency has been evaluated. Specifically, the varied system parameters include the nanoparticle volume fraction, the inlet Reynolds number, the inlet nanofluid temperature, and different channel heights. Optimal parameter values were found based on minimizing the system's entropy generation. Considering a typical 200-sun concentration, the best performance can be achieved with a channel of 10 mm height and an inlet Reynolds number of around 30,000, yielding a modest system efficiency of 20%. However, higher nanoparticle volume fractions and lower nanofluid inlet temperatures further improve the cell efficiency. For a more complete solar energy use, a combined concentration photovoltaic and thermal heating system are suggested.


Author(s):  
Allison Gray ◽  
Robert Boehm ◽  
Kenneth W. Stone

Cooling of photovoltaic cells under high intensity solar irradiance is a major concern when designing concentrating photovoltaic systems. The cell temperature will increase if the waste heat is not removed and the cell voltage/power will decrease with increasing cell temperature. This paper presents an analysis of the passive cooling system on the Amonix high concentration photovoltaic system (HCPV). The concentrator geometry is described. A model of the HCPV passive cooling system was made using Gambit. Assumptions are discussed that were made to create the numerical model based on the actual system, the methods for drawing the model is discussed, and images of the model are shown. Fluent was used to compute the numerical results. In addition to the theoretical results that were computed, measurements were made on a system in the field. These data are compared to the theoretical data and differences are calculated. Theoretical conditions that were studied included uniform cell temperatures and worst case weather scenarios, i.e., no wind, high ambient conditions, and high solar irradiance. The performance of the Amonix high concentrating system could be improved if more waste heat were removed from the cell. Now that a theoretical model has been developed and verified, it will be used to investigate different designs and material for increasing the cooling of the system.


2014 ◽  
Vol 61 ◽  
pp. 2258-2261 ◽  
Author(s):  
A. Aldossary ◽  
A. Algarue ◽  
S. Mahmoud ◽  
R.K. AL-Dadah

2012 ◽  
Vol 512-515 ◽  
pp. 84-89
Author(s):  
Wen Guang Geng ◽  
Ling Gao ◽  
Min Shao ◽  
Dong Ling Yuan ◽  
Xuan You Li

Cooling of concentration photovoltaic (CPV) cells with oscillating heat pipe was investigated numerically and experimentally. Based on Reynolds-averaged Navier-Stokes approach, a turbulent model was proposed in present work. Numerical study presented the temperature distribution under different heat flux and various outdoor conditions. CPV (with 12 suns concentration) system was experimentally studied, and the results show that the oscillating heat pipe begin operation at about 62°C, and CPV system could enhance electric power with a good cooling system under a high concentration light. The oscillating heat pipe cooling system, without air fan or pump, no power consumption, gives a uniform, reliable, simple and costless cooling method, oscillating heat pipe cooling is suitable for the high-CPV system.


2010 ◽  
Author(s):  
Dong-Hwan Jun ◽  
Sang Hyuk Park ◽  
Yongmin Park ◽  
Chang Zoo Kim ◽  
Ho Kwan Kang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document