Investigation on Cooling System of High-Concentration Photovoltaic with Oscillating Heat Pipe

2012 ◽  
Vol 512-515 ◽  
pp. 84-89
Author(s):  
Wen Guang Geng ◽  
Ling Gao ◽  
Min Shao ◽  
Dong Ling Yuan ◽  
Xuan You Li

Cooling of concentration photovoltaic (CPV) cells with oscillating heat pipe was investigated numerically and experimentally. Based on Reynolds-averaged Navier-Stokes approach, a turbulent model was proposed in present work. Numerical study presented the temperature distribution under different heat flux and various outdoor conditions. CPV (with 12 suns concentration) system was experimentally studied, and the results show that the oscillating heat pipe begin operation at about 62°C, and CPV system could enhance electric power with a good cooling system under a high concentration light. The oscillating heat pipe cooling system, without air fan or pump, no power consumption, gives a uniform, reliable, simple and costless cooling method, oscillating heat pipe cooling is suitable for the high-CPV system.

Author(s):  
Lakshya Bhatnagar ◽  
Guillermo Paniagua

Abstract This work aims to provide a technique with which high frequency heat flux measurement data can be acquired in systems with high operational temperatures and high-speed flows with quantifiable and accurate uncertainty estimates. This manuscript presents the detailed calibration and application of an atomic layer thermopile, for heat fluxes with a frequency bandwidth of 0 to 1MHz. Two calibration procedures with a detailed uncertainty analysis. The first procedure consists using a laser to deliver radiation heat flux, while the second consists of a convective heat blowdown experiment. The use of this probe is demonstrated in a high-speed environment at Mach 2. The sensor effectively captures the passage of the normal shock wave and the values are compared with those computed using surface temperature measurement. Finally, a numerical study is carried out to design a cooling system that will allow the sensor to survive in high temperature conditions of 1273K while the sensor film is maintained at 323K. A two-dimensional axisymmetric conjugate heat transfer analysis is carried out to obtain the desired geometry.


Author(s):  
Gustavo Gutierrez ◽  
Juan Catan˜o ◽  
Tien-Chien Jen

In this paper, a full transient analysis of the performance of a heat pipe with a wick structure is performed. For the vapor flow, the conventional Navier-Stokes equations are used. For the liquid flow in the wick structure, which is modeled as a porous media, volume averaged Navier-Stokes equation are adopted. The energy equation is solved for the solid wall and wick structure of the heat pipe. The energy and momentum equations are coupled through the heat flux at the liquid-vapor interface that defines the suction and blowing velocities for the liquid and vapor flow. The evolution of the vapor-liquid interface temperature is coupled through the heat flux at this interface that defines the mass flux to the vapor and the new saturation conditions to maintain a fully saturation vapor all the time. A control volume approach is used in the development of the numerical scheme. A parametric study is conducted to study the effect of different parameters that affect the thermal performance of the heat pipe. And experimental setup is developed and numerical results are validated with experimental data. The results of this study will be useful for the heat pipe design and implementation in processes that are essentially transient and steady state conditions are not reached like for example drilling applications.


Author(s):  
Sudipta Saha ◽  
Amitav Tikadar ◽  
Jamil Khan ◽  
Tanvir Farouk

Abstract With an escalating need to find ways to reduce the water consumption in industrial cooling system, on-demand hybrid cooling has been a topic of great interest. The main concept of this cooling method is centered upon the utilization of huge exchange of enthalpy associated with phase change process in a conventional convective cooling system. In this study, a multidimensional multi-physics model has been employed to study a system that undergoes this dual mode cooling process where both convection and evaporation contribute to the heat transfer process. The computational domain considered is comprised of a thin liquid film that undergoes evaporation with constant heat flux provided from the bottom and a convective loading of laminar air flow above it. Evaporation takes place at the liquid-gas interface and the evaporated mass is being carried away by the incoming air, hence augmenting the convective cooling through the phase change process. This is an extension of our prior work where the surface structure modification (i.e. undulated surface) on the performance of this proposed hybrid cooling method is numerically investigated. Array of hemispherical structures have been introduced as the surface introducing the heat flux to the liquid film. The objective is to increase the surface to volume ratio and decrease the thermal resistance across the liquid film. The predictions indicate that with the increase in the height of the undulated surface the thermal resistance across the liquid film tends to decrease. Results from these simulations show that a ∼50% reduction in the thermal resistance can be achieved by the surface structure modification while the net evaporation flux can be doubled compared to a flat film configuration.


2007 ◽  
Vol 589 ◽  
pp. 1-31 ◽  
Author(s):  
JIN ZHANG ◽  
STEPHEN J. WATSON ◽  
HARRIS WONG

Micro heat pipes have been used to cool micro electronic devices, but their heat transfer coefficients are low compared with those of conventional heat pipes. In this work, a dual-wet pipe is proposed as a model to study heat transfer in micro heat pipes. The dual-wet pipe has a long and narrow cavity of rectangular cross-section. The bottom-half of the horizontal pipe is made of a wetting material, and the top-half of a non-wetting material. A wetting liquid fills the bottom half of the cavity, while its vapour fills the rest. This configuration ensures that the liquid–vapour interface is pinned at the contact line. As one end of the pipe is heated, the liquid evaporates and increases the vapour pressure. The higher pressure drives the vapour to the cold end where the vapour condenses and releases the latent heat. The condensate moves along the bottom half of the pipe back to the hot end to complete the cycle. We solve the steady-flow problem assuming a small imposed temperature difference between the two ends of the pipe. This leads to skew-symmetric fluid flow and temperature distribution along the pipe so that we only need to focus on the evaporative half of the pipe. Since the pipe is slender, the axial flow gradients are much smaller than the cross-stream gradients. Thus, we can treat the evaporative flow in a cross-sectional plane as two-dimensional. This evaporative motion is governed by two dimensionless parameters: an evaporation number E defined as the ratio of the evaporative heat flux at the interface to the conductive heat flux in the liquid, and a Marangoni number M. The motion is solved in the limit E→∞ and M→∞. It is found that evaporation occurs mainly near the contact line in a small region of size E−1W, where W is the half-width of the pipe. The non-dimensional evaporation rate Q* ~ E−1 ln E as determined by matched asymptotic expansions. We use this result to derive analytical solutions for the temperature distribution Tp and vapour and liquid flows along the pipe. The solutions depend on three dimensionless parameters: the heat-pipe number H, which is the ratio of heat transfer by vapour flow to that by conduction in the pipe wall and liquid, the ratio R of viscous resistance of vapour flow to interfacial evaporation resistance, and the aspect ratio S. If HR≫1, a thermal boundary layer appears near the pipe end, the width of which scales as (HR)−1/2L, where L is the half-length of the pipe. A similar boundary layer exists at the cold end. Outside the boundary layers, Tp varies linearly with a gradual slope. Thus, these regions correspond to the evaporative, adiabatic and condensing regions commonly observed in conventional heat pipes. This is the first time that the distinct regions have been captured by a single solution, without prior assumptions of their existence. If HR ~ 1 or less, then Tp is linear almost everywhere. This is the case found in most micro-heat-pipe experiments. Our analysis of the dual-wet pipe provides an explanation for the comparatively low effective thermal conductivity in micro heat pipes, and points to ways of improving their heat transfer capabilities.


2019 ◽  
Vol 124 ◽  
pp. 01010
Author(s):  
A. N. Rogalev ◽  
N. D. Rogalev ◽  
V. O. Kindra ◽  
S. K. Osipov ◽  
A. S. Zonov

Evaluation of the heat transfer and hydraulic performance of a new pin fin-dimple cooling system in a rectangular channel shows its advantage. The performance are compared with the pin fin system ones with 3-D Reynolds averaged Navier-Stokes (RANS) equations. The fluid flow and heat transfer analysis for the Reynolds numbers from 8000 to 70000 involved the shear stress transport turbulence model. The new system forms a high-intensity vortex around the pin fin-dimple that increases the near-wall turbulent mixing level that intensifies the heat transfer. The calculation results indicate increases of the averaged Nusselt number and the averaged friction factor of 7–13% and 7–12% respectively against the pin fin.


Author(s):  
A. Andreini ◽  
A. Bacci ◽  
C. Carcasci ◽  
B. Facchini ◽  
A. Asti ◽  
...  

A numerical study of a single can combustor for the GE10 heavy-duty gas turbine, which is being developed at GE-Energy (Oil & Gas), is performed using the STAR-CD CFD package. The topic of the present study is the analysis of the cooling system of the combustor liner’s upper part, named “cap”. The study was developed in three steps, using two different computational models. As first model, the flow field and the temperature distribution inside the chamber were determined by meshing the inner part of the liner. As second model, the impingement cooling system of the cold side of the cap was meshed to evaluate heat transfer distribution. For the reactive calculations, a closure of the BML (Bray-Moss-Libby) approach based on Kolmogorov-Petrovskii-Piskunov theorem was used. The model was implemented in the STAR-CD code using its user coding features. Then the radiative thermal load on the liner walls was evaluated by means of the STAR-CD-native Discrete Transfer model. The selection of the radiative properties of the flame was performed using a correlation procedure involving the total emissivity of the gas, the mean beam length and the gas temperature. The estimated heat flux on the cap was finally used as boundary condition for the calculation of the cooling system, consisting of 68 staggered impingement jet lines on the cold side of the cap. The resulting temperature distribution shows a good agreement with the experimental values measured by thermocouples. The results confirm the validity of the implemented procedure, and point out the importance of a full CFD computation as an additional tool to support classic correlation design procedures.


Author(s):  
Jen Supra ◽  
Holger Janßen ◽  
Werner Lehnert ◽  
Detlef Stolten

A 10-cell high-temperature polymer electrolyte fuel cell (HT-PEFC) stack with an active cell area of 200 cm2 has been built up and tested with regard to the temperature distribution from cell to cell and over the active area since not every cell is cooled. Measurements with artificial reformate as a fuel show that the vertical temperature distribution over the active area is sufficiently small, with a maximum of 5.1 K at 550 mA cm−2. Additionally, the temperature gradient from cell to cell is sufficiently small with 10.7 K at 550 mA cm−2. As a result, it can be concluded that the heat pipe supported external cooling is well suited to cool HT-PEFC stacks with large active areas in reformate operation.


Author(s):  
Yoshiro Miyazaki

An oscillating heat pipe consists of a micro channel which turns many times between the heating section and the cooling section. Herein, a developmental study on flexible oscillating heat pipes for cooling notebook personal computers is presented. The heat pipe functions to transport heat from the CPU to the rear surface of the folding display, which serves as a radiating surface. The heat pipe tubes at the hinge are flexible so that the heat pipe may fold. In order to evaluate the thermal performance of the cooling system, flexible oscillating heat pipes were fabricated and tested. The heat pipes consist of copper capillary tubes and Teflon flexible tubes. Excellent thermal performance was obtained in the test: the thermal resistance was 0.3 K/W and the maximum heat transport capability was 100 W.


Sign in / Sign up

Export Citation Format

Share Document