Computational Analysis of Nanofluid Cooling of High Concentration Photovoltaic Cells

Author(s):  
Z. Xu ◽  
C. Kleinstreuer

High concentration photovoltaic devices require effective heat rejection to keep the solar cells within a suitable temperature range and to achieve acceptable system efficiencies. Various techniques have been developed to achieve these goals. For example, nanofluids as coolants have remarkable heat transfer characteristics with broad applications; but, little is known of its performance for concentration photovoltaic cooling. Generally, a cooling system should be designed to keep the system within a tolerable temperature range, to minimize energy waste, and to maximize system efficiency. In this paper, the thermal performance of an Al2O3-water cooling system for densely packed photovoltaic cells under high concentration has been computationally investigated. The model features a representative 2D cooling channel with photovoltaic cells, subject to heat conduction and turbulent nanofluid convection. Considering a semi-empirical nanofluid model for the thermal conductivity, the influence of different system design and operational parameters, including required pumping power, on cooling performance and improved system efficiency has been evaluated. Specifically, the varied system parameters include the nanoparticle volume fraction, the inlet Reynolds number, the inlet nanofluid temperature, and different channel heights. Optimal parameter values were found based on minimizing the system's entropy generation. Considering a typical 200-sun concentration, the best performance can be achieved with a channel of 10 mm height and an inlet Reynolds number of around 30,000, yielding a modest system efficiency of 20%. However, higher nanoparticle volume fractions and lower nanofluid inlet temperatures further improve the cell efficiency. For a more complete solar energy use, a combined concentration photovoltaic and thermal heating system are suggested.

2013 ◽  
Vol 718-720 ◽  
pp. 162-165
Author(s):  
Sheng Long Wang ◽  
Yin Hai Ge ◽  
Wen Hao Li

In order to understand the variation of ammonia as a cooling refrigerant, the ammonia coolant is being used in power plant air cooling system. The subcooled boiling phase transformation of ammonia in a horizontal pipe tube was simulated through the application of the CFD fluid computational platform, the fluid state parameters in the tube were given at the same time. The speed variation along the axis of the tube was obtained, the speed is increasing, the Reynolds number corresponding substantial increase in the convective heat transfer coefficient corresponds to raise; The vapor volume fraction and boiling heat transfer coefficient along the tube were obtained. The boiling can strengthen the heat transfer significantly. The results showed that the ammonia as a cooling refrigerant by raising the Reynolds number and the use of the latent heat absorb these dual characteristics to improve the heat transfer coefficient is worth promoting.


2019 ◽  
Vol 164 (0) ◽  
pp. 250-270
Author(s):  
Mohammed , Ibrahim ◽  
Hala , Abdel-Hameeda ◽  
Hosny Abou-Ziyana,

2002 ◽  
Vol 458 ◽  
pp. 35-73 ◽  
Author(s):  
CH. NIENHÜSER ◽  
H. C. KUHLMANN

The thermocapillary flow in liquid bridges is investigated numerically. In the limit of large mean surface tension the free-surface shape is independent of the flow and temperature fields and depends only on the volume of liquid and the hydrostatic pressure difference. When gravity acts parallel to the axis of the liquid bridge the shape is axisymmetric. A differential heating of the bounding circular disks then causes a steady two-dimensional thermocapillary flow which is calculated by a finite-difference method on body-fitted coordinates. The linear-stability problem for the basic flow is solved using azimuthal normal modes computed with the same discretization method. The dependence of the critical Reynolds number on the volume fraction, gravity level, Prandtl number, and aspect ratio is explained by analysing the energy budgets of the neutral modes. For small Prandtl numbers (Pr = 0.02) the critical Reynolds number exhibits a smooth minimum near volume fractions which approximately correspond to the volume of a cylindrical bridge. When the Prandtl number is large (Pr = 4) the intersection of two neutral curves results in a sharp peak of the critical Reynolds number. Since the instabilities for low and high Prandtl numbers are markedly different, the influence of gravity leads to a distinctly different behaviour. While the hydrostatic shape of the bridge is the most important effect of gravity on the critical point for low-Prandtl-number flows, buoyancy is the dominating factor for the stability of the flow in a gravity field when the Prandtl number is high.


2021 ◽  
Vol 1 ◽  
pp. 3279-3288
Author(s):  
Maria Hein ◽  
Darren Anthony Jones ◽  
Claudia Margot Eckert

AbstractEnergy consumed in buildings is a main contributor to CO2 emissions, there is therefore a need to improve the energy performance of buildings, particularly commercial buildings whereby building service systems are often substantially over-designed due to the application of excess margins during the design process.The cooling system of an NHS Hospital was studied and modelled in order to identify if the system was overdesigned, and to quantify the oversizing impact on the system operational and embodied carbon footprints. Looking at the operational energy use and environmental performance of the current system as well as an alternative optimised system through appropriate modelling and calculation, the case study results indicate significant environmental impacts are caused by the oversizing of cooling system.The study also established that it is currently more difficult to obtain an estimate of the embodied carbon footprint of building service systems. It is therefore the responsibility of the machine builders to provide information and data relating to the embodied carbon of their products, which in the longer term, this is likely to become a standard industry requirement.


2012 ◽  
Vol 16 (5) ◽  
pp. 1519-1523
Author(s):  
Pei-Feng Lin ◽  
Di-Chong Wu ◽  
Ze-Fei Zhu

Ultra-fine particle coagulation by Brownian motion at high concentration in planar jet flow is simulated. A Taylor-Series Expansion Method of Moments is employed to solve the particle general dynamic equation. The volume fraction gets high value, very closes to that at the nozzle exit. As the vortex pairing develops, the high volume fraction region rolls out and mixes with the low value region. The enhancement factor given by Trzeciak et al. will be less than one at some specific outer positions, which seems to be less accurate than the one given by Heine et al.


2018 ◽  
Vol 916 ◽  
pp. 221-225
Author(s):  
Ji Zu Lv ◽  
Liang Yu Li ◽  
Cheng Zhi Hu ◽  
Min Li Bai ◽  
Sheng Nan Chang ◽  
...  

Nanofluids is an innovative study of nanotechnology applied to the traditional field of thermal engineering. It refers to the metal or non-metallic nanopowder was dispersed into water, alcohol, oil and other traditional heat transfer medium, to prepared as a new heat transfer medium with high thermal conductivity. The role of nanofluids in strengthening heat transfer has been confirmed by a large number of experimental studies. Its heat transfer mechanism is mainly divided into two aspects. On the one hand, the addition of nanoparticles enhances the thermal conductivity. On the other hand, due to the interaction between the nanoparticles and base fluid causing the changes in the flow characteristics, which is also the main factor affecting the heat transfer of nanofluids. Therefore, a intensive study on the flow characteristics of nanofluids will make the study of heat transfer more meaningful. In this experiment, the flow characteristics of SiO2-water nanofluids in two-dimensional backward step flow are quantitatively studied by PIV. The results show that under the same Reynolds number, the turbulence of nanofluids is larger than that of pure water. With the increase of nanofluids volume fraction, the flow characteristics are constantly changing. The quantitative analysis proved that the nanofluids disturbance was enhanced compared with the base liquid, which resulting in the heat transfer enhancement.


2021 ◽  
Vol 21 (2) ◽  
pp. 7-11
Author(s):  
Ahmed Mansoor Abbood ◽  
Haider K. Mehbes ◽  
Abdulkareem. F. Hasan

In this study, glass-filled epoxy functionally graded material (FGM) was prepared by adopting the hand lay-up method. The vertical gravity casting was used to produce a continuous variation in elastic properties. A 30 % volume fraction of glass ingredients that have mean diameter 90 μm was spread in epoxy resin (ρ = 1050 kg/m3). The mechanical properties of FGM were evaluated according to ASTM D638. Experimental results showed that a gradually relationship between Young’s modulus and volume fraction of glass particles, where the value of Young’s modulus at high concentration of glass particles was greater than that at low concentration, while the value of Poisson’s ratio at high concentration of glass particles was lower than that at low concentration. The manufacture of this FG beam is particularly important and useful in order to benefit from it in the field of various fracture tests under dynamic or cyclic loads.


Sign in / Sign up

Export Citation Format

Share Document