scholarly journals Effect of Boron, Potassium and Calcium on Growth, Yield and Quality of Two Sugar Beet Varieties under Sandy Soil Conditions

2017 ◽  
Vol 8 (6) ◽  
pp. 699-704 ◽  
Author(s):  
E. Aly ◽  
Soha Khalil ◽  
Eman M. Abdel Fattah
2012 ◽  
Vol 26 (2) ◽  
pp. 177-182 ◽  
Author(s):  
Darren E. Robinson ◽  
Kristen E. McNaughton

Trials were established in 2007, 2008, and 2009 in Ontario, Canada, to determine the effect of soil residues of saflufenacil on growth, yield, and quality of eight rotational crops planted 1 yr after application. In the year of establishment, saflufenacil was applied PRE to field corn at rates of 75, 100, and 200 g ai ha−1. Cabbage, carrot, cucumber, onion, pea, pepper, potato, and sugar beet were planted 1 yr later, maintained weed-free, and plant dry weight, yield, and quality measures of interest to processors for each crop were determined. Reductions in dry weight and yield of all grades of cucumber were determined at both the 100 and 200 g ha−1rates of saflufenacil. Plant dry weight, bulb number, and size and yield of onion were also reduced by saflufenacil at 100 and 200 g ha−1. Sugar beet plant dry weight and yield, but not sucrose content, were decreased by saflufenacil at 100 and 200 g ha−1. Cabbage plant dry weight, head size, and yield; carrot root weight and yield; and pepper dry weight, fruit number and size, and yield were only reduced in those treatments in which twice the field corn rate had been applied to simulate the effect of spray overlap in the previous year. Pea and potato were not negatively impacted by applications of saflufenacil in the year prior to planting. It is recommended that cabbage, carrot, cucumber, onion, pepper, and sugar beet not be planted the year after saflufenacil application at rates up to 200 g ha−1. Pea and potato can be safely planted the year following application of saflufenacil up to rates of 200 g ha−1.


2018 ◽  
pp. 1-11
Author(s):  
Rama T. Rashad ◽  
Fatma H. A. El-Agyzy ◽  
Seham M. Abdel-Azeem

Aims: Two field experiments have been carried out to study the effect of different irrigation periods in the presence of compost as an organic amendment on the yield and quality of lupine (Lupinus termis L.) under the sandy soil conditions. Study Design: Split-plot design.  Place and Duration of Study: The successive winter seasons of 2016/2017 and 2017/2018 at the Ismailia Agricultural Research Station, (30°35'30" N 32°14'50" E elevation 3 m), Agricultural Research Center (ARC), Egypt. Methodology: Compost has been applied at the rates of 11.90, 23.81 and 35.71 ton/ha before planting. Three irrigation intervals were assigned after planting by 3, 6, and 9 days; the applied water volume for each was 4761.91 m3/ha. Results: After harvesting, some parameters were estimated. As the compost rates increased, the soil EC significantly decreased while the available N, P, K, and Fe were significantly increased by 9.51, 12.79, 5.17, and 5.8%, respectively. For same compost rate, the irrigation intervals (3, 6, and 9 days) significantly decreased the available N relatively by 2.88, 5.16, and 6.96%, respectively and the available K by 3.45, 5.06, and 4.37%, respectively. The 6 days interval showed that most significant increase in the seeds' content of nutrients at different compost rates and the seed yield has increased by 19.59, 22.31, and 21.88% for the compost rates of 11.90, 23.81, and 35.71 ton/ha, respectively. The relative increase was by 20.48, 7.63, 4.49, 10.89, and 14.92% for the crude protein, crude lipids, total ash, TSS and the amino acids, respectively. The effect of treatments on the relative shoot moisture (%) and the field water use efficiency (F.W.U.E.) (kg/m3) was discussed. Conclusion: The 6 days irrigation interval along with a compost application rate of 23.81 ton/ha can be recommended for lupine grown in sandy soil as they showed the most significant increase in the nutrients content of seeds by 22.31%.


Sign in / Sign up

Export Citation Format

Share Document