scholarly journals The study of thermoregulatory behavior of reptiles by of implantation temperature recorders

Author(s):  
Nikolay A. Litvinov ◽  
◽  
Maria K. Panova ◽  
Gennadiy A. Okulov ◽  
◽  
...  
Ecosphere ◽  
2017 ◽  
Vol 8 (12) ◽  
pp. e02033 ◽  
Author(s):  
Sebastian Kirchhof ◽  
Robyn S. Hetem ◽  
Hilary M. Lease ◽  
Donald B. Miles ◽  
Duncan Mitchell ◽  
...  

Author(s):  
C. Ballesteros ◽  
J. A. Garci´a ◽  
M. I. Orti´z ◽  
R. Rodri´guez ◽  
M. Varela

A detailed tribological characterization of low-energy, nitrogen implanted V5 at. %Ti alloy is presented. Samples were nitrogen-implanted at an accelerating voltage of 1.2 kV and 1 mA/cm2, up to a dose of 1E19 ions/cm2. The tribological properties of the alloys: microhardness, friction coefficient and wear resistance, have improved after ion implantation and this improvement increases as the implantation temperature increases. The microstructure of the alloys were analysed by transmission electron microscopy. A direct correlation between structural modifications of the nitrogen implanted layer and the improvement in their tribological properties is obtained. For samples implanted at 848 K a nanocomposite layer where the reinforcement particles are TiN precipitates forms. TiN precipitation appears as the responsible of the improvement in the tribological properties.


Evolution ◽  
2002 ◽  
Vol 56 (2) ◽  
pp. 349 ◽  
Author(s):  
Anders Forsman ◽  
Karin Ringblom ◽  
Emilio Civantos ◽  
Jonas Ahnesjö

1991 ◽  
Vol 235 ◽  
Author(s):  
D. O. Boerma ◽  
T. Corts

ABSTRACTTi/Al, Ni/Ti, and Ni/Al bilayers were produced by evaporation on a Si substrate. The thicknesses of the composing layers were in the 50–200 nm range. The as-evaporated bilayers were implanted with doses of 0.4–2.5 · 1017 of 15N ions/cm2. The 15N energy was chosen so that the calculated projected range was either in the middle of the top Ni layer, or coincided with the interface between the metal layers. The implantation temperature was varied in the range from 25 °C to 245 °C. The 15N depth profiles as measured with nuclear reaction analysis (NRA) were found to have the expected Gaussian shape for the Ti/Al bilayers. However, in the Ni/Ti and Ni/Al layers very asymmetric 15N profiles were observed, with a major fraction of N atoms in the Ti or Al layer, and a minor fraction in the Ni layer. The N concentrations in the Al or Ti layers were found to be almost constant. A massive redistribution of N atoms must have taken place in all three metals during the implantations, to form the observed profiles. We speculate that this remarkable phenomenon, which occurs even below 80°C, can be explained by interstitial diffusion of N atoms and subsequent trapping in Ti or Al, which have a high chemical affinity for nitrogen. The N atoms remaining in the Ni layer after implantation were found to migrate out of this layer during annealing at temperatures ≥250°C.


Copeia ◽  
2016 ◽  
Vol 104 (3) ◽  
pp. 746-751 ◽  
Author(s):  
Stephanie A. Karavlan ◽  
Matthew D. Venesky

1989 ◽  
Vol 256 (5) ◽  
pp. R1160-R1163 ◽  
Author(s):  
B. T. Firth ◽  
M. B. Thompson ◽  
D. J. Kennaway ◽  
I. Belan

Daily rhythms in plasma melatonin levels were compared in two ecologically diverse reptilian species under natural environmental conditions in autumn. The nocturnal, cold temperature-adapted tuatara (Sphenodon punctatus) had a melatonin rhythm of much lower amplitude than did the diurnal desert-adapted sleepy lizard (Tiliqua rugosa). Experiments in controlled laboratory environments showed that, although both species are capable of attaining a comparable melatonin peak (approximately 750 pmol/l), the threshold temperature at which a significant daily rhythm occurs is approximately 15 degrees C in S. punctatus compared with approximately 25 degrees C in T. rugosa. This difference probably reflects the disparate thermoregulatory adaptations of the two species, S. punctatus favoring mean activity temperatures of 11.5 degrees C and T. rugosa, 32.5 degrees C. In ectotherms such as reptiles, therefore, species-typical thermoregulatory behavior may provide thermal cues that interact with photoperiod to provide the appropriate melatonin signal for the regulation of annual physiological cycles.


Sign in / Sign up

Export Citation Format

Share Document