Examination of three-dimensional flow characteristics in the distribution channel to the flocculation basin using computational fluid dynamics simulation

2005 ◽  
Vol 54 (6) ◽  
pp. 349-354 ◽  
Author(s):  
Heung-Ki Baek ◽  
No-Suk Park ◽  
Jeong-Hyun Kim ◽  
Sun-Ju Lee ◽  
Hang-Sik Shin
Author(s):  
Sing Ngie David Chua ◽  
Boon Kean Chan ◽  
Soh Fong Lim

Thermal accumulation in a car cabin under direct exposure to sunlight can be extremely critical due to the risk of heatstroke especially to children who are left unattended in the car. There are very limited studies in the literature to understand the thermal behaviour of a car that is parked in an open car park space and the findings are mostly inconsistent among researchers. In this paper, the studies of thermal accumulation in an enclosed vehicle by experimental and computational fluid dynamics simulation approaches were carried out. An effective and economical method to reduce the heat accumulation was proposed. Different test conditions such as fully enclosed, fully enclosed with sunshade on front windshield and different combinations of window gap sizes were experimented and presented. Eight points of measurement were recorded at different locations in the car cabin and the results were used as the boundary conditions for the three-dimensional computational fluid dynamics simulation. The computational fluid dynamics software used was ANSYS FLUENT 16.0. The results showed that the application of sunshade helped to reduce thermal accumulation at car cabin by 11.5%. The optimum combination of windows gap size was found to be with 4-cm gap on all four windows which contributed to a 21.1% reduction in car cabin temperature. The results obtained from the simulations were comparable and in agreement with the experimental tests.


2004 ◽  
Vol 126 (4) ◽  
pp. 794-802 ◽  
Author(s):  
Dong-Chun Choi ◽  
David L. Rhode

A new approach for employing a two-dimensional computational fluid dynamics (CFD) model to approximately compute a three-dimensional flow field such as that in a honeycomb labyrinth seal was developed. The advantage of this approach is that it greatly reduces the computer resource requirement needed to obtain a solution of the leakage for the three-dimensional flow through a honeycomb labyrinth. After the leakage through the stepped labyrinth seal was measured, it was used in numerically determining the value of one dimension (DTF1) of the simplified geometry two-dimensional approximate CFD model. Then the capability of the two-dimensional model approach was demonstrated by using it to compute the three-dimensional flow that had been measured at different operating conditions, and in some cases different distance to contact values. It was found that very close agreement with measurements was obtained in all cases, except for that of intermediate clearance and distance to contact for two sets of upstream and downstream pressure. The two-dimensional approach developed here offers interesting benefits relative to conventional algebraic-equation models, particularly for evaluating labyrinth geometries/operating conditions that are different from that of the data employed in developing the algebraic model.


Author(s):  
Shuai Yang ◽  
Dazhuan Wu ◽  
Zhounian Lai ◽  
Tao Du

In this study, three-dimensional computational fluid dynamics simulation was adopted to evaluate the valve-induced water hammer phenomena in a typical tank-pipeline-valve-tank system. Meanwhile, one-dimensional analysis based on method of characteristics was also used for comparison and reference. As for the computational fluid dynamics model, the water hammer event was successfully simulated by using the sliding mesh technology and considering water compressibility. The key factors affecting simulation results were investigated in detail. It is found that the size of time step has an obvious effect on the attenuation of the wave and there exists a best time step. The obtained simulation results have a good agreement with the experimental data, which shows an unquestionable advantage over the method of characteristics calculation in predicting valve-induced water hammer. In addition, the computational fluid dynamics simulation can also provide a visualization of the pressure and flow evolutions during the transient process.


Sign in / Sign up

Export Citation Format

Share Document