The sense of smell: contributions of orthonasal and retronasal perception applied to metallic flavor of drinking water

2009 ◽  
Vol 58 (8) ◽  
pp. 562-570 ◽  
Author(s):  
Andrea M. Dietrich
Author(s):  
Susan Mirlohi

Zerovalent iron nanotechnologies are widely used for groundwater remediation and increasingly considered for advance oxidation treatment in drinking water applications. Iron nanoparticles have been detected in drinking water systems and considered for food fortification; therefore, the potential for human exposure through ingestion can be a concern. This study aimed to assess whether ingestion of iron nanoparticles from drinking water could be detected through flavor perception using In Vitro salivary lipid oxidation as an indicator for metallic flavor perception. Ten female subjects, aged 29–59 years, donated saliva samples for use in the In Vitro experiments. Test samples consisted of 1:1 mixture of saliva and bottled drinking water (control) and three treatment solutions, spiked with ferrous sulfate, stabilized zerovalent iron nanoparticles (nZVI), and an aggregated/microsized suspension of mixed zerovalent iron and microsized suspension of iron and iron oxide metal powder, (mZVI). Upon mixing, samples were subjected to 15 min incubation at 37 °C to resemble oral conditions. Salivary lipid oxidation (SLO) was measured in all samples as micromoles of thiobarbituric acid reactive substances (TBARS)/mg Fe. Exposure to iron in all three forms induced significant amount of SLO in all treatment samples as compared to the control (p < 0.0001). The mean SLO levels were the highest in the ferrous treatment, followed by nZVI and mZVI treatments; the differences in the mean SLO levels were significant (p < 0.05). The findings indicate that oral exposure to stabilized ZVI nanoparticles may induce sensory properties different from that of ferrous salt, likely predictive of diminished detection of metallic flavor by humans.


1985 ◽  
Vol 6 (2) ◽  
pp. 52-58 ◽  
Author(s):  
Susan T. Bagley

AbstractThe genus Klebsiella is seemingly ubiquitous in terms of its habitat associations. Klebsiella is a common opportunistic pathogen for humans and other animals, as well as being resident or transient flora (particularly in the gastrointestinal tract). Other habitats include sewage, drinking water, soils, surface waters, industrial effluents, and vegetation. Until recently, almost all these Klebsiella have been identified as one species, ie, K. pneumoniae. However, phenotypic and genotypic studies have shown that “K. pneumoniae” actually consists of at least four species, all with distinct characteristics and habitats. General habitat associations of Klebsiella species are as follows: K. pneumoniae—humans, animals, sewage, and polluted waters and soils; K. oxytoca—frequent association with most habitats; K. terrigena— unpolluted surface waters and soils, drinking water, and vegetation; K. planticola—sewage, polluted surface waters, soils, and vegetation; and K. ozaenae/K. rhinoscleromatis—infrequently detected (primarily with humans).


1983 ◽  
Vol 17 (9) ◽  
pp. 394-394 ◽  
Author(s):  
JGMM Smeenk

2018 ◽  
Vol 39 (4) ◽  
pp. 191-195
Author(s):  
Nicholas J. Kelley ◽  
Adrienne L. Crowell

Abstract. Two studies tested the hypothesis that self-reported sense of smell (i.e., metacognitive insight into one’s olfactory ability) predicts disgust sensitivity and disgust reactivity. Consistent with our predictions two studies demonstrated that disgust correlates with self-reported sense of smell. Studies 1 and 2 demonstrated, from an individual difference perspective, that trait-like differences in disgust relate to self-reported sense of smell. Physical forms of disgust (i.e., sexual and pathogen disgust) drove this association. However, the association between self-reported sense of smell and disgust sensitivity is small, suggesting that it is likely not a good proxy for disgust sensitivity. The results of Study 2 extended this finding by demonstrating that individual differences in self-reported sense of smell influence how individuals react to a disgusting olfactory stimulus. Those who reported having a better sense of smell (or better insight into their olfactory ability) found a disgusting smell significantly more noxious as compared to participants reporting having a poor sense of smell (or poor insight into their olfactory ability). The current findings suggest that a one-item measure of self-reported sense of smell may be an effective tool in disgust research.


Sign in / Sign up

Export Citation Format

Share Document